• Title/Summary/Keyword: exponential estimator

Search Result 146, Processing Time 0.02 seconds

Testing for $P(X_{1}\;<\;X_{2})$ in Bivariate Exponential Model with Censored Data (중단자료를 갖는 이변량 지수 모형에서 $P(X_{1}\;<\;X_{2})$에 대한 검정)

  • Park, Jin-Pyo;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.143-152
    • /
    • 1997
  • In this paper, we obtain maximum likelihood estimators for $P(X_{1}\;<\;X_{2})$ in the Marshall and Olkin's bivariate exponential model with bivariate censored data. The asymptotic normality of the estimator is derived. Also we propose approximate testing for $P(X_{1}\;<\;X_{2})$ based on the M.L.E. We compare the test powers under vsrious conditions through Monte Carlo simulation.

  • PDF

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.

Parameter estimation for exponential distribution under progressive type I interval censoring (지수 분포를 따르는 점진 제1종 구간 중도절단표본에서 모수 추정)

  • Shin, Hye-Jung;Lee, Kwang-Ho;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.927-934
    • /
    • 2010
  • In this paper, we introduce a method of parameter estimation of progressive Type I interval censored sample and progressive type II censored sample. We propose a new parameter estimation method, that is converting the data which obtained by progressive type I interval censored, those data be used to estimate of the parameter in progressive type II censored sample. We used exponential distribution with unknown scale parameter, the maximum likelihood estimator of the parameter calculates from the two methods. A simulation is conducted to compare two kinds of methods, it is found that the proposed method obtains a better estimate than progressive Type I interval censoring method in terms of mean square error.

A Study on A, pp.ication of Reliability Prediction & Demonstration Methods for Computer Monitor (Computer용 Monitor에 대한 신뢰성 예측.확인 방법의 응용)

  • 박종만;정수일;김재주
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.3
    • /
    • pp.96-107
    • /
    • 1997
  • The recent stream to reliability prediction is that it is totally inclusive in depth to consider even the operating and environmental condition at the level of finished goods as well as component itselves. In this study, firstly we present the reliability prediction methods by entire failure rate model which failure rate at the system level is added to the failure rate model at the component level. Secondly we build up the improved bases of reliability demonstration through a, pp.ication of Kaplan-Meier, Cumulative hazard, Johnson's methods as non-parametric and Maximum Likelihood Estimator under exponential & Weibull distribution as parametric. And also present the methods of curve fitting to piecewise failure rate under Weibull distribution, PRST (Probability Ratio Sequential Test), curve fitting to S-shaped reliability growth curve, computer programs of each methods. Lastly we show the practical for determination of optimal burn-in time as a method of reliability enhancement, and also verify the practical usefulness of the above study through the a, pp.ication of failure and test data during 1 year.

  • PDF

Testing Exponentiality of Kullback-Leibler Information Function based on a Step Stress Accelerated Life Test

  • Park Byung Gu;Yoon Sang Chul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.235-240
    • /
    • 2000
  • In this paper a test of fit for exponentiality and we propose the estimator of Kullback-Leibler Information functions using the data from accelerated life tests. This acceleration model is assumed to be a tampered random variable model. The procedure is applicable when the exponential parameter based on the data from accelerated life tests is or is not specified under null hypothesis. Using Simulations, the power of the proposed test based on use condition of accelerated life test under alternatives is compared with that of other standard tests in the small sample.

  • PDF

Optimum Progressive-Stress Accelerated Life Test (증가하는 스트레스에서의 최적가속수명시험)

  • Yun, Won-Young;Jung, Sung-Gi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.15-21
    • /
    • 1993
  • This paper considers the optimal design of accelerated life test in which the stress is linearly increased. It discusses the special case when the life distribution under constant stress follows an exponential distribution and the accelerated equation satisfies the inverse power law. It is assumed that cumulative damage is linear, that is, the remaining life of test units depends only on the current cumulative fraction failed and current stress(cumulative exposure model). The optimization criterion is the asymptotic variance of the maximum likelihood estimator of the log mean life at a design stress. The optimal increasing rate is obtained to minimize the asymptotic variance. Table of sensitivity analysis is given for the prior estimators of model parameters.

  • PDF

Optimum Simple Step-Stress Accelerated Life Tests Under Periodic Observation

  • Bai, Do-Sun;Kim, Myung-Soo;Lee, Sang-Hyuk
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 1989
  • This paper presents optimum simple step-stress accelerated life test plans for the case where the test process is observed periodically at intervals of the same length. Two types of failure data, periodically observed complete data and periodically observed censored data, are considered. An exponential life distribution with a mean that is a log-linear function of stress, and a cumulative exposure model for the effect of changing stress are assumed. For each type of data, the optimum test plan which minimizes the asymptotic variance of the maximum likelihood estimator of the mean life at a design stress is obtained and its behaviors are studied.

  • PDF

Estimation of Reliability for a Tow-Component Parallel Stress-Strength System

  • Hong, Yeon-Woong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 1999
  • In this paper we estimate the reliability of parallel system with two components. We assume that the strengths of these components follow bivariate exponential(BVE) models proposed by Marshall-Olkin(1967) Block-Basu(1974) Freund(1961) and Proschan-Sullo(1974) These two components are subjected to a normally distributed random stress which is independent of the strength of the components. If the strengths ($\textit{X}_1$, $\textit{X}_2$) are subjected to a stress($\textit{Y}$) then the system reliability ($\textit{R}$) is given by $\textit{R}=\textit{P}[\textit{Y} We present some numerical results and compare the bias and the mean square error of the maximum likelihood estimator and proposed estimators for a moderate sized samples when $(\textit{X}_1, \textit{X}_2)$ follow BVE of Marshall-Olkin.

  • PDF

Optimal three step-stress accelerated life tests for Type-I hybrid censored data

  • Moon, Gyoung Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.271-280
    • /
    • 2015
  • In this paper, the maximum likelihood estimators for parameters are derived under three step-stress accelerated life tests for Type-I hybrid censored data. The exponential distribution and the cumulative exposure model are considered based on the assumption that a log quadratic relationship exits between stress and the mean lifetime ${\theta}$. The test plan to search optimal stress change times minimizing the asymptotic variance of maximum likelihood estimators are presented. A numerical example to illustrate the proposed inferential procedures and some simulation results to investigate the sensitivity of the optimal stress change times by the guessed parameters are given.

A Bayesian Test for Simple Tree Ordered Alternative using Intrinsic Priors

  • Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.73-92
    • /
    • 1999
  • In Bayesian model selection or testing problems, one cannot utilize standard or default noninformative priors, since these priors are typically improper and are defined only up to arbitrary constants. The resulting Bayes factors are not well defined. A recently proposed model selection criterion, the intrinsic Bayes factor overcomes such problems by using a part of the sample as a training sample to get a proper posterior and then use the posterior as the prior for the remaining observations to compute the Bayes factor. Surprisingly, such Bayes factor can also be computed directly from the full sample by some proper priors, namely intrinsic priors. The present paper explains how to derive intrinsic priors for simple tree ordered exponential means. Some numerical results are also provided to support theoretical results and compare with classical methods.

  • PDF