• Title/Summary/Keyword: exponential asymptotic stability

Search Result 15, Processing Time 0.019 seconds

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

Negative Exponential Disparity Based Deviance and Goodness-of-fit Tests for Continuous Models: Distributions, Efficiency and Robustness

  • Jeong, Dong-Bin;Sahadeb Sarkar
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.41-61
    • /
    • 2001
  • The minimum negative exponential disparity estimator(MNEDE), introduced by Lindsay(1994), is an excellenet competitor to the minimum Hellinger distance estimator(Beran 1977) as a robust and yet efficient alternative to the maximum likelihood estimator in parametric models. In this paper we define the negative exponential deviance test(NEDT) as an analog of the likelihood ratio test(LRT), and show that the NEDT is asymptotically equivalent to he LRT at the model and under a sequence of contiguous alternatives. We establish that the asymptotic strong breakdown point for a class of minimum disparity estimators, containing the MNEDE, is at least 1/2 in continuous models. This result leads us to anticipate robustness of the NEDT under data contamination, and we demonstrate it empirically. In fact, in the simulation settings considered here the empirical level of the NEDT show more stability than the Hellinger deviance test(Simpson 1989). The NEDT is illustrated through an example data set. We also define a goodness-of-fit statistic to assess adequacy of a specified parametric model, and establish its asymptotic normality under the null hypothesis.

  • PDF

A New Algorithm for Recursive Short-term Load Forecasting (순환형식에 의한 기분거좌상측 알고리)

  • Young-Moon Park;Sung-Chul Oh
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.5
    • /
    • pp.183-188
    • /
    • 1983
  • This paper deals with short-term load forecasting. The load model is represented by the state variable form to exploit the Kalman filter technique. The load model is derived from Taylor series expansion and remainder term is considered as noise term. In order to solve recursive filter form, among various algorithm of solving Kalman filter, this paper uses exponential data weighting technique. This paper also deals with the asymptotic stability of filter. Case studies are carried out for the hourly power demand forecasting of the Korea electrical system.

  • PDF

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Adaptive Control of Flexible-Link Robots (유연마디 로봇의 적응제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1689-1696
    • /
    • 2000
  • This paper proposes a new adaptive control scheme for flexible-link robots. A model-based nonlinear control scheme is designed based on a V-shape Lyapunov function, and then the nonlinear control i s extended to a model-based adaptive control to cope with parametric uncertainties in the dynamic model. The proposed control guarantees the global exponential or global asymptotic stability of the overall control system with all internal signals bounded. The effectiveness of the proposed control is shown by computer simulation.