• Title/Summary/Keyword: explosive spalling

Search Result 84, Processing Time 0.024 seconds

An Experimental Study on the Explosive Spalling Properties of High Strength Concrete Structure Member (고강도 콘크리트 구조부재의 폭렬 특성에 관한 실험적 연구)

  • Kim, Heung-Youl;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.421-424
    • /
    • 2006
  • This study, in order for perceiving the mechanical attribute followed by the explosive spalling of high strength concrete material under high temperature and evaluating capacity of endurance of material, targets understanding capacity of endurance of material such as explosive spalling in high temperature, temperature by thickness of clothing, transformation extent, transformation speed and displacement, stocking the maximum load based on the Allowable Stress Design Method. As a result of experimenting the explosive spalling attribute of high strength concrete material, the one possibly causing serious damage is the 50 MPa concrete. In all aspects of 60 MPa concrete, explosive spalling happens. Especially, it is hazardous enough to reveal all the iron bar. All explosive spalling is intensively concentrated on the surface of concrete for the first $5{\sim}25$ minutes, which urges for the explosive spalling protection action. As a result of evaluating the structural safety by the transformation of high strength concrete, while beam assures the fire safety meeting regulation, 60 MPa shows the dramatic increase of transformation, which only counts 84% of safety. In a column, both the concrete exclusion and excessive explosive spalling are concentrated upper part of column, which brings about the dramatic transformation, so it only meets the 50% of safety regulation. Likewise, in 80, 100 MPa concrete which was never experimented considering the condition of domestic structural endurance stocking devices, the faster collapse is expected.

  • PDF

Effect of silica fume content in concrete blocks on laser-induced explosive spalling behavior

  • Seong Y. Oh;Gwon Lim;Sungmo Nam;Byung-Seon Choi;Taek Soo Kim;Hyunmin Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1988-1993
    • /
    • 2023
  • This experimental study investigated the effect of silica fume mixed in concrete blocks on laser-induced explosion behavior. We used a 5.3 kW fiber laser as a thermal source to induce explosive spalling on a concrete surface blended with and without silica fume. An analytical approach based on the difference in the removal rate and thermal behavior was used to determine the effect of silica fume on laser-induced explosive spalling. A scanner was employed to calculate the laser-scabbled volume of the concrete surface to derive the removal rate. The removal rate of the concrete mixed with silica fume was higher than that of without silica fume. Thermal images acquired during scabbling were used to qualitatively analyze the thermal response of laser-induced explosive spalling on the concrete surface. At the early stage of laser heating, an uneven spatial distribution of surface temperature appeared on the concrete blended with silica fume because of frequent explosive spalling within a small area. By contrast, the spalling frequency was relatively lower in laser-heated concrete without silica fume. Furthermore, we observed that a larger area was removed via a single explosive spalling event owing to its high porosity.

An Experimental study on Reduction Effect to Explosive spalling of high performance concrete by Fiber Type and Volume Fraction of Fiber (섬유종류 및 혼입량에 따른 고성능콘크트의 폭열저감에 관한 실험적 연구)

  • Na, Chul-Sung;Shin, Kwan-Soo;Kim, Young-Sun;Kwon, Young-Jin;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.81-85
    • /
    • 2005
  • Recently, fire resistance of high performance concrete for explosive spalling was issued as high performance concrete was vulnerable to the explosive spalling in initial fire. Therefore, in this study, an experiment about reduction effect to explosive spalling of high performance concrete is performed by adding several polymer fiber with various volume fraction, an then final fiber and volume fraction of that which reduce the explosive spalling of high performance concrete is presented. As the result of this study, the most fitted fiber volume fraction of reducing effect for explosive spalling at high performance concrete is under the 0.1%, as consider the flowability and efficiency.

  • PDF

Fire Performance of Structural Lightweight Aggregate Concrete using PP fiber (PP섬유 혼입 고강도 경량골재콘크리트의 내화특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • Normally, Structural light-weight aggregate concrete(LWC) has been main used in high rise building with the object of wight loss. In spite of LWC have the advantage of light-weight, limit the use of strength restrictions by reason that explosive spalling in fire. Especially, LWC is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with fire performance of LWC for the purpose of using PP fibers prevent to explosive spalling. From the experimental test result, LWC is happened explosive spalling.

  • PDF

A Study on the fire resistance for explosive spalling according to two side (폭렬에 기인한 2면 내화가열실험에 관한 연구)

  • Lee, Kyu Min;Kang, Seung Goo;Kim, Dong Jun;Lee, Jae Young;Harada, Kazunori;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.323-325
    • /
    • 2013
  • This study on the proposes a spalling mechanism based on the results of a fire resistance test of HSC(High Strength Concrete) considering important factors of spalling occurrence. The factors considered in this two-sided are fire resistance test to ISO 834 fire curve. In this study, explosive spalling phenomena in the specimens were investigation.

  • PDF

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

Explosive Spalling of Structural Lightweight Aggregate Concrete (구조용 경량골재 콘크리트의 폭렬특성)

  • Song, Hun;Lee, Jong-Chan;Lee, Sea-Hyun;Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.477-480
    • /
    • 2006
  • Normally, with all ensuring the fire resistance structure as a method of setting the required cover thickness to fire, the RC is significantly affected from the standpoint of its structural stability that the compressive strength and elastic modulus is reduced by fire. Especially, high strength concrete and lightweight aggregate concrete is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with explosive spalling of lightweight concrete using structural lightweight aggregate. From the experimental test result, lightweight aggregate concrete is happened explosive spalling. The decrease of cross section caused by explosive spalling made sharp increasing gradient of inner temperature.

  • PDF

An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture (잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF

The Influence of Compressive Strength and Moisture Contents on Explosive Spalling of Concrete (압축강도 및 함수율이 콘크리트의 폭렬에 미치는 영향)

  • Kim, Dong-Joon;Han, Byung-Chan;Lee, Jae-Young;Harada, Kazunori;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • In the high temperature situation like in a fire, the high strength of concrete (HSC) has extreme danger named explosive spalling. It is assumed that the major cause of explosive spalling is water vapour pressure inside concrete. This paper examines the effect of the compressive strength and the moisture content on the initial occurrence of explosive spalling. For the effective experiment of the initial explosive spalling, the curve of ISO834 temperature profile is applied on the basis of 15 minute and 30 minute. As a result, the more increase the compressive strength and the moisture content, the more increase the occurrence and phenomenon of explosive spalling. This paper analyzes the territory of explosive spalling depending the compressive strength and the moisture content. The explosive spalling is not examined in the case of the compressive strength 50~100 MPa and the moisture content below 3% and the compressive strength over 100 MPa and the moisture content below 1%. Also, due to the HSC, which makes it more difficult to transport vapour and moisture, very high vapour-pressure may occur close to the surface, there is a greater risk that HSC spalls compared with normal strength concrete (NSC).

A Study on the Mechanism of Explosive Spalling and Spalling Prevention Methods of High-Strength Concrete in Fire Temperature (고강도 콘크리트의 폭렬발생 및 폭렬저감 메커니즘에 관한 문헌적 고찰)

  • Jung, Hee-Jin;Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.313-316
    • /
    • 2008
  • Nowadays, the use of high strength concrete has become increasingly popular. Thus, the theory of this study gives a definition of HSC mechanism through study factors of spalling occurrence of HSC and solutions of failure mechanism. During the fire goes on, building structure using HSC causes explosive spalling and finally it gets to the breaking of the structure down. As a result of this failure mechanism, it remains to be investigated to prevent from explosive spalling of HSC and needs to provide basic problems of HSC at high temperature.

  • PDF