• Title/Summary/Keyword: explosive concentration

Search Result 85, Processing Time 0.029 seconds

A Study on the Explosion Phenomenon and Flame Propagation of LP Gas (LP가스의 폭발 현상 및 화염전파에 관한 연구)

  • Choi, Jae-Wook;Lee, Dong-Hoon;Kim, Tae-Gn;Min, Wong-Chul;Lim, Woo-Sub;Choi, Byoung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.65-70
    • /
    • 2007
  • The explosion phenomenon and hazard estimate of LP gas, the study was examined into variation of oxygen concentration and LP gas concentration. As the result of experiment, the lower explosive limit was decreased as the increased at concentration of LP gas and 21% of oxygen concentration. Minimum oxygen concentration was 14.5%. 12.0%, 11.5% at 1.0, 1.5 and 2.0 bar respectively. And maximum explosion pressure was increased for $6.46kg/cm^2,\;9.41kg/cm^2\;and\;13.49kg/cm^2$ according to increased of pressure. The speed of flame propagation was increased as the higher with initial pressure of LP gas.

  • PDF

A Study on the Reduction of Stress Concentration for the Breech System (잠금장치의 응력집중 저감에 관한 연구)

  • 이영신;류충현;송근영;김인우;이규섭;차기업
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.246-254
    • /
    • 2001
  • The breech system can be considered as a pressure vessel with an internal plug under high explosive pressure. The system consists of a breech block(internal plug) whose front surface subjects to pressure, and a breech ring(pressure vessel). There is the geometric discontinuity around roots of connection parts and then stress concentration is introduced due to pressure, where contact effect may be ignored because contact plane between two equipments is parallel ideally, Generally high stress concentration phenomena shorten the life cycle of the mechanical system. It is well known that shock load is much more harmful on safety of the system than static load. In this present paper, several geometric design variables which may affect stress condition on the system are chosen and the parametric study on the design variables is carried using commercial FEM codes. Finally, the obtained results in the single lug breech system are applied to design the 3 lugs breech system. The 3 lugs breech system can reduce the maximum stress level.

  • PDF

Water table: The dominant control on CH4 and CO2 emission from a closed landfill site

  • Nwachukwu, Arthur N.;Nwachukwu, Nkechinyere V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.123-133
    • /
    • 2020
  • A time series dataset was conducted to ascertain the effect of water table on the variability in and emission of CH4 and CO2 concentrations at a closed landfill site. An in-situ data of methane/carbon dioxide concentrations and environmental parameters were collected by means of an in-borehole gas monitor, the Gasclam (Ion Science, UK). Linear regression analysis was used to determine the strength of the correlation between ground-gas concentration and water table. The result shows CH4 and CO2 concentrations to be variable with strong negative correlations of approximately 0.5 each with water table over the entire monitoring period. The R2 was slightly improved by considering their concentration over single periods of increasing and decreasing water table, single periods of increasing water table, and single periods of decreasing water table; their correlations increased significantly at 95% confidence level. The result revealed that fluctuations in groundwater level is the key driving force on the emission of and variability in groundgas concentration and neither barometric pressure nor temperature. This finding further validates the earlier finding that atmospheric pressure - the acclaimed major control on the variability/migration of CH4 and CO2 concentrations on contaminated sites, is not always so.

Production of ρ-Hydroxyacetophenone by Engineered Escherichia coli Heterologously Expressing 1-(4-Hydroxyphenyl)-Ethanol Dehydrogenase

  • Wenmei Wu;Xiwei Yuan;Xin Gao;Chaoyang Tan;Shunxiang Li;Dehong Xu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.467-475
    • /
    • 2024
  • ρ-Hydroxyacetophenone is an important and versatile compound that has been widely used in medicine, cosmetics, new materials, and other fields. At present, there are two ways to obtain ρ-hydroxyacetophenone. One is to extract it from plants, such as Artemisia capillaris Thunb and Cynanchum otophyllum Schneid, and the other is to synthesize it by using chemical methods. Of these two methods, the second is the main one, although it has problems, such as flammable and explosive reagents, difficult separation of by-products, and harsh reaction conditions. To solve these issues, we adopted genetic engineering in this study to construct engineered Escherichia coli containing Hped gene or EbA309 gene. Whole-cell biotransformation was conducted under the same conditions to select the engineered E. coli with the higher activity. Orthogonal tests were conducted to determine the optimal biotransformation condition of the engineered E. coli. The results showed that the optimal condition was as follows: substrate concentration of 40 mmol/l, IPTG concentration of 0.1 mmol/l, an induction temperature of 25℃, and a transformation temperature of 35℃. Under this condition, the effects of transformation time on the ρ-hydroxyacetophenone concentration and cell growth were further studied. We found that as the transformation time extended, the ρ-hydroxyacetophenone concentration showed a gradually increasing trend. However, when the ρ-hydroxyacetophenone concentration increased to 1583.19 ± 44.34 mg/l in 24 h, cell growth was inhibited and then entered a plateau. In this research, we realized the synthesis of ρ-hydroxyacetophenone by biotransformation, and our findings lay a preliminary foundation for further improving and developing this method.

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-182
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

  • PDF

Robust Design of Connecting Rod Using Variable Stress (변동 응력을 이용한 커넥팅 로드 강건 설계)

  • Lee, Seungwoo;Kim, Hangyu;Lee, Taehyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.716-723
    • /
    • 2016
  • A connecting rod is a crucial part for transmitting an explosive force to the crankshaft in the engine. Stress concentration in connecting rod due to the accumulation of the repeated load may initiate micro crack and result in a crucial break down of the component. Two approaches are adopted to obtain a robust design of connecting rod. Inner and outer array matrix based on combinations of control factors and noise factors are constructed for using Taguchi method. Calculated stress results for each element of matrix are plotted in the Goodman diagram. Robust design approach by Taguchi method reduces stress concentration occurred in small end fillet area of the default model. Variable stress approach using Goodman diagram also confirms a robust design by Taguchi method.

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.32-38
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Nitroglycerin Biodegradation under Denitrification Conditions and Corresponding Microbial Community Shifts upon Acclimation (탈질조건에서 nitroglycerin의 생물학적 분해 동역학 및 미생물 군집 변화)

  • Choi, Wonchul;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.42-54
    • /
    • 2019
  • Biodegradation of an explosive compound, glyceryl trinitrate (GTN), was studied with a denitrifying microbial culture grown in a sequencing batch reactor and a GTN acclimated denitrifying culture. The GTN acclimated culture, which were fed on GTN for 1 month, degraded GTN regioselectively via denitration on C1 position as compared to C2 position denitration by denitrifying culture that has never been exposed to GTN. Accumulation of two isomeric glyceryl dinitrates (GDNs) in both culture medium suggests that GDN denitration is the rate-limiting step in GTN biodegradation. The first order GTN degradation rate normalized to cell concentration of the acclimated culture was calculated to be 0.045 (${\pm}0.002$) L/g-hr. Increasing concentration of electron acceptor(nitrate) resulted in discouraged GTN degradation. According to microbial community analysis, prolonged GTN exposure resulted in 25% increase in the genus level of the GTN acclimated culture with the disappearance of two dominating denitrifying microbial species of Methyloversatilis universalis and Hyphomicrobium zavarzinii in the denitrifying culture.

A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN (LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구)

  • Kim, Eui Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.

Recrystallization of RDX High Energy Material Using N,N-Dimethylformamide Solvent and Supercritical $CO_2$ Antisolvent (디메틸포름아마이드 용매와 초임계 이산화탄소 역용매를 사용한 RDX 고에너지 물질의 재결정)

  • Kim, Chang-Ki;Lee, Byung-Chul;Lee, Youn-Woo;Kim, Hyoun-Soo
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.233-238
    • /
    • 2009
  • Supercritical fluid processes have gained great attention as a new and environmentally-benign method of preparing the microparticles of energetic materials like explosives and propellants. In this work, RDX (cyclotrimethylenetrinitramine) was selected as a target explosive. The microparticle formation of RDX using supercritical anti-solvent (SAS) recrystallization process was performed and the effect of operating variables on the size and morphology of prepared particles was observed. N,N-Dimethylformamide was used as organic solvent for dissolving the RDX. The size of the RDX particles decreased remarkably up to less than $10\;{\mu}m$ by SAS recrystallization. In the range of operating conditions of the SAS process studied in this work, the finest RDX particles were obtained at 313.15K, 150 bar, and 15wt% RDX concentration in feed solution.