• Title/Summary/Keyword: explosion characteristics

Search Result 363, Processing Time 0.023 seconds

A Study on the Hazard of Converted Gas for Surface Heating Treatment (표면열처리용 변성가스의 위험성에 관한 연구)

  • Choi Jae-Wook;Min Wong-Chul;Lim Woo-Sub;Lee Byoung-Chul;Kim Dong-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.9-14
    • /
    • 2005
  • To estimate the explosion characteristics of converted gas, the study was examined into effects of altering oxygen concentration and adding hydrogen. From the result of the experiment, as the concentration of converted gas and hydrogen were increased at $21\%$ oxygen concentration, the lower explosion limit was low. Minimum explosion oxygen concentration was $6\%$. Maximum explosion pressure of converted gas was $4.61 kg_f/cm^2$, now Maximum explosion pressure rising velocity was $130.75 kg_f/cm^2/s$ at converted gas concentration $40\%$. Also, minimum ignition energy was 0.13 mJ at converted gas concentration $50\%$.

  • PDF

Explosion Hazards and Flame Velocity in Aluminum Powders (알루미늄 분체의 폭발위험성과 화염전파속도)

  • Han, Ou-Sup;Lee, Su-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.7-13
    • /
    • 2012
  • An experimental study has been done to investigate the explosion characteristics of aluminum powders with different sizes and concentrations in a 20 L spherical explosion vessel. Two different sizes of aluminum powder were used : $15.1{\mu}m$ and $34.8{\mu}m$ with a volume mean diameter. The results revealed that $15.1{\mu}m$ Al powder has a Lower explosion limit (LEL) of $40g/m^3$, a maximun explosion pressure ($P_{max}$) of 9.8 bar and a maximum rate of pressure rise ($[dP/dt]_{max}$) of 1852 bar/s, in $34.8{\mu}m$ Al powder, LEL of $70g/m^3$, $P_{max}$ of 7.9 bar and $[dP/dt]_{max}$ of 322 bar/s. The LEL of Al powders tended to increase with the increase of particle size. Also, it was found that the flame velocity calculated from the powder with $15.1{\mu}m$ was about 5 times higher than that of the powder of $34.8{\mu}m$.

Properties of Explosion and Flame Velocity with Content Ratio in Mg-Al Alloy Particles (마그네슘합금의 조성비율에 따른 폭발 및 화염전파 특성)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.32-37
    • /
    • 2012
  • The aim of this study is to evaluate the characteristics of explosion and flame velocity that can be utilized to factories where Mg-Al alloy metal powders are handled in the form of raw materials, products or by-product for similar dust explosion prevention and mitigation. Because the strength of the blast pressure is the result due to flame propagation, flame velocity in dust explosion can be utilized as a valuable information for damage prediction. An experimental investigation was carried out on the influences of content ratio of Mg-Al alloy (mean particle size distribution of 151 to 161 ${\mu}m$). And a model of flame propagation velocity based on the time to peak pressure and flame arrival time in dust explosion pressure, assuming the constant burning velocity, leads to a representation of flame velocity during dust explosion. As the results, the maximum flame velocity of Mg-Al(60:40 wt%), Mg-Al(50:50 wt%) and Mg-Al(40:60 wt%) was estimated 15.5, 18 and 15.2 m/s respectively, and also tend to change with content ratio of Mg-Al.

A Study on the Comparison of Explosive Lower Limit Concentration & Thermal Specific of Wheat Powder Dust & Salicylic Acid Dust (밀가루분진 및 살리실산분진의 폭발하한농도 및 열적특성 비교에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • We have examined In order to compare each other from explosion and combustion characteristics about the dusts which collects from manufacturing process of wheat flour and cosmetics manufacturing process of functional Keratin removal soap at the small and medium enterprise style. We measured explosive pressure and explosive lower limit which follows in change of concentration change at the time of talc addition uses Hartman dust explosion apparatus, also measured weight loss and endothermic quantity uses DSC and TGA. The explosion test results show that increased explosive lower limit concentration and explosive pressure decreased by the increased ratio of the talc dust. And the DSC results show that heat flux and temperature decreased by the increased ratio of the talc dust. Also increased in raising temperature causes initial smoldering temperature to move towards low temperature section and the endothermic quantity increased on a large scale. Together the TGA results show that weight loss decreased by the increased ratio of the talc dust. From this research we have assured the successive dust explosion mechanism study will play a key role as a significant safety securing guideline against the dust explosion.

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

Experimental Investigations on the Characteristics of Explosion Mitigations by Different Concentrations of Agar Gel Barriers (Agar Gel Barrier의 농도변화에 따른 폭발완화 특성에 관한 실험적 연구)

  • Park, Dal-Jae;Kim, Nam-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.13-18
    • /
    • 2011
  • Experimental studies were carried out to investigate the characteristics of explosion mitigations by varying concentrations of agar gel barriers in an explosion chamber, 1400 mm in length, with a square cross-section of $100{\times}100mm^2$. Another extension chamber, $100{\times}100{\times}300mm^3$, was made to hold a gel barrier. Four different gel concentrations were used in the measurements: 2, 3, 4, 5 %(by weight of gel). Displacement of the gel barrier was measured using a high speed camera, and pressure development was measured using pressure transducers and a data acquisition system. It was found that as the concentrations of the gel barriers increased, the gel rupture time and the time taken to reach the maximum pressure increased. It was also found that the increment of gel concentrations increased the reduction percentage in the maximum pressure between before and after gel barrier.

The Characteristics of the Fatal Accidents Caused by Fire, Explosion and Asphyxiation during Welding and Flame Cutting in the Manufacturing Industry (제조업에서의 용접·용단 작업 중 화재·폭발·질식 사망사고 특성)

  • Seo, Dong-Hyun;Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.21-27
    • /
    • 2019
  • Many accidents have been occurring during welding and flame cutting work related to maintenance and repair as the domestic manufacturing facilities gradually become decrepit. However, it is not easy to find the accurate statistics and analysis data on accidents occurring during welding or flame cutting operations related to maintenance and repair of machinery and equipment. Therefore, in this study, the fatal accident cases of fire/explosion and asphyxiation that occurred during the welding and flame cutting work in the manufacturing industry were collected and their characteristics were analyzed. Then, we tried to find the connection of the accidents according to the machinery/equipment and the work content, and to provide the materials and measures that can be used to prevent the similar accidents. We collected 329 cases of the fatal accidents related to fire/explosion and leakage/contact of chemical substances in the domestic manufacturing industry during the last 10 years (2008 ~ 2017). Among them, 72 accidents occurred during welding or flame cutting were extracted and the related reports were investigated whether they occurred during usual work or unusual work. Also, the machinery/equipment and the work content related to the accidents were classified and analyzed based on the criteria. The analysis results showed that 31 cases of the fire/explosion accidents occurred during usual work and 32 cases during unusual work, and it was found that 9 cases of asphyxiation death occurred during usual work. Then, from the analysis results, the connections of the machinery/equipment and the work contents related to the accidents were schematized into a accident tree.

Study on Explosion Characteristics and Thermal Stability of Activated Carbon (활성탄의 폭발특성과 열안정성에 관한 연구)

  • Yi-Rac Choi;Dong-Hyun Seo;Ou-Sup Han;Hyo-Geun Cha
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.134-140
    • /
    • 2023
  • Activated carbon is a carbonaceous material mainly used as a gaseous or liquid adsorbent. As fire-related accidents occur consistently due to the accumulation of heat of adsorption and oxidation of volatile organic compounds, the explosive characteristics and thermal stability of powdered and granular activated carbon made from coal and coconut shells were evaluated. As a result of the particle size analysis, the powdered activated carbon was in the particle size range (0.4~3) ㎛, and thermal properties such as exothermic onset temperature and decomposition behavior were analyzed using a differential scanning calorimetry and a thermogravimetric analysis. As a result of the evaluation of the explosion hazards for dust, both coal-based and coconut-based powdered activated carbon are classified as St1 class with weak explosion, but this is a relative and does not mean that the explosion hazards is absolutely low. Therefore, it is necessary to establish countermeasures for reducing the damage.

Characteristic Analysis of a Ex Circuit of Ex LED Signal Lamp Operating with AC/DC 12~254 V (AC/DC 12~254 V로 동작하는 방폭 LED Signal Lamp용 방폭 회로의 특성 분석)

  • Jeong, Min-Joo;Her, In-Sung;Kang, In-Cheol;Yu, Young-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.690-695
    • /
    • 2014
  • In this paper, we develop a explosion-proof LED lighting (Ex circuit) circuit of Explosion-proof LED Signal Lamp (Ex LSL) to utilize the core module of the explosion-proof Local Control System (Ex LCS) for offshore plant applications. And then analyzed its electrical, optical and thermal characteristics. Ex circuit was applied input voltage from AC/DC(12~254) V. In this experiments, stable light-on characteristics were confirmed by eyes for the every input voltages with min. 78,462 and max. $517,975cd/m^2$ of luminance. also Output current and output luminance was made proportional. Because the measured maximum surface temperature of Ex circuit was $54.23^{\circ}C$ at AC 48 V, Ex circuit was rated with T6 of temperature class. Finally, Ex circuit was shown stable light on characteristics under the $-50^{\circ}C$ and $60^{\circ}C$ during 12 hours of test period.

Impact Resistance Characteristics of HPFRCC Depending on Various Fiber Replacing Ratio (섬유혼입율 변화에 따른 HPFRCC의 내충격 특성)

  • Park, Yong-Jun;Kim, Dae-Gun;Mun, Gyeong-Sik;Han, Sang-Hyu;Kim, Gyu-Yong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.75-76
    • /
    • 2015
  • This study has examined the impact resistance and blast resistance characteristics of HPFRCC as a research on impact resistance and blast resistance characteristics using high volume mortar and high velocity projectile for evaluating the protection performance of actual buildings as small quantity experiment of laboratory conditions is performed although there was an instance of performing research on mortar that has reinforced fiber followed by the rise of problems on the damage of human life and buildings created due to explosion and shock. As a result, the destruction loss area and depth have decreased in case of the surface compared to the rear side. As tensile strength and tenacity have increased with the increased fiber replacing ratio, a tendency of destruction loss area and depth getting decreased was shown as the impact resistance has increased.

  • PDF