• Title/Summary/Keyword: exploration geophysics

Search Result 887, Processing Time 0.155 seconds

Case of Geophysical Survey Guideline for Site Investigation of Spent Nuclear Fuel disposal: Focusing on airborne electromagnetic and seismic reflection survey (사용후핵연료 처분시설 부지조사를 위한 물리탐사 수행지침서 작성 사례 : 항공전자탐사와 탄성파 반사법탐사 중심으로)

  • NamYoung Kong;Hagsoo Kim;Yoonsup Moon;Manho Han
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.69-83
    • /
    • 2024
  • Considering importance and specificity, site investigations for deep geological disposal of Spent Nuclear Fuel require stringent quality control, unlike general geotechnical investigations for tunnels and bridges. In this study, we present a case of selecting geophysical survey method for individual site investigation stage and preparing geophysical survey guideline. The proposed geophysical survey guidelines include procedures, considerations, and quality control for exploration planning, data acquisition, data processing, and interpretation. They comprehensively summarize the contents of airborne electromagnetic survey and seismic reflection survey.

Determination of the Location of a Line Source using Gravity Gradient Tensor (중력 변화율 텐서를 이용한 선형 이상체 위치 결정)

  • Park, Changseok;Rim, Hyoungrea
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.263-268
    • /
    • 2017
  • The determination algorithm of the location of a line source with strike and dip using the gravity gradient tensor on a single profile is proposed. We already proposed the determination of strike and dip in the previous paper and then, now we improved the algorithm to locate a line source after determining strike and dip. The strike and dip of the line source can be determined by rotating the gravity gradient tensor matrix as reducing 2 independent components. Using the ratio of remaining 2 components, the location can be determined by the least square manner of the pointing vectors on each observation point. A synthetic model is tested for proving the usefulness of the proposed algorithm.

Determination of the Strike and the Dip of a Line Source Using Gravity Gradient Tensor (중력 변화율 텐서를 이용한 선형 이상체의 주향과 경사 결정)

  • Rim, Hyoungrea;Jung, Hyun-Key
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.529-536
    • /
    • 2014
  • In this paper, the automatic determination algorithm of strike and dip of a line source using gravity gradient on a single profile is proposed. In general, the gravity gradient tensor due to a line source has only two independent components because of its 2-Dimensional (2-D) characteristics. However, if the line source has the strike and dip regarding the observation profile, it comes to have five independent components. The proposed algorithm of the determination both strike and dip is based on the rotational transform that converts full gravity gradient tensor to reduced 2-D gravity gradient tensor. The least-square method is applied in order to find optimum rotational angles that make one of the row components minimalized simultaneously. The two synthetic cases of a line source are represented; one has strike only and the other has both strike and dip. This study finds that the automatic determination method using gravity gradient tensor can find directions of a line source in each case.

Suggestion for the Maintenance Program of the Sea Dike Using Geophysical Methods (지구물리학적 방법을 이용한 방조제 유지·관리 체계 제안)

  • Yong, Hwan-Ho;Cho, In-Ky;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • The sea dike is the most important facility of reclamation projects, and plays an important role in securing freshwater in the reservoir. Systematic research on practical approaches and data analysis techniques are lacking even though some geophysical methods such as electrical resistivity and self-potential surveys are included within the inspection processes. Hence, geophysical methods were considered for improvement of precision safety diagnosis methods after problems in the maintenance system have been identified, such as safety checks and precision safety diagnoses. In addition, geophysical methods customized according to variations in ambient environmental limiting factors such as pore pressure changes by tidal fluctuation, compaction characteristics of the fill materials, and the surface condition of the embankment were suggested.

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

Investigation of Contamination Area from Landfill Using the Small-loop Electromagnetic Survey (소형루프 전자탐사를 이용한 폐기물 오염범위 탐지)

  • Song, Sung-Ho;Um, Jae-Yeon;Cho, In-Ky;Jung, Cha-Youn
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.158-163
    • /
    • 2011
  • The small-loop electromagnetic (EM) survey is an effective method to delineate contamination areas and pathways of contaminant plumes from landfill. A multi-frequency small-loop EM survey was applied to find them at landfill area, located in delta region, and checked the results with in-situ surveys including 24 trench excavations and 12 drilling boreholes. The correlation between these two results indicates this survey would be suitable to investigate the contamination area. However, it would be difficult to analyze low resistivity less than 10 ohm-m below 10 m depth in delta area without drilling survey because of a limitation to expand the penetration depth lower than 10 m depth due to the separation of 1.66 m between the two coils of GEM-2.

Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration (다중격자 준선형 근사 및 반복적 전자탐사 구조보정법에 기초한 해양 인공송신 전자탐사 자료의 빠른 수치해석 기법)

  • Ueda, Takumi;Zhdanov, Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.

Archaeological geophysics: 3D imaging of the Muweilah archaeological site, United Arab Emirates

  • Evangelista Ryz;Wedepohl Eric
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.93-98
    • /
    • 2004
  • The sand-covered Muweilah archaeological site in the United Arab Emirates (UAE) is a unique Iron Age site, and has been subject to intensive investigations. However, excavations are time consuming and may require twenty years to complete. Thus geophysical surveys were undertaken with the objective of characterising the site more expeditiously. This paper presents preliminary results of these surveys. Ground penetrating radar (GPR) was tested as a primary imaging tool, with an ancillary shallow time domain EM (MetalMapper) system. Dense 3D GPR datasets were migrated to produce horizontal (plan view) depth slices at 10 cm intervals, which is conceptually similar to the archaeologists' excavation methodology. The objective was to map all features associated with anthropogenic activity. This required delineating extensive linear and planar features, which could represent infrastructure. The correlation between these and isolated point reflectors, which could indicate anthropogenic activity, was then assessed. Finally, MetalMapper images were used to discriminate between metallic and non-metallic scatterers. The moderately resistive sand cover allowed GPR depth penetration of up to 5 m with a 500 MHz system. GPR successfully mapped floor levels, walls, and isolated anthropogenic activity, but crumbling walls were difficult to track in some cases. From this study, two possible courtyard areas were recognised. The MetalMapper was less successful because of its limited depth penetration of 50 cm. Despite this, the system was still useful in detecting modem-day ferruginous waste and bronze artefacts. The results (subject to ongoing ground-truthing) indicated that GPR was optimal for sites like Muweilah, which are buried under a few metres of sand. The 3D survey methodology proved essential to achieve line-to-line correlation for tracking walls. In performing the surveys, a significant improvement in data quality ensued when survey areas were flattened and de-vegetated. Although MetalMapper surveys were not as useful, they certainly indicated the value of including other geophysical data to constrain interpretation of complex GPR features.

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data (합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

Tutorial on the Coordinate Transforms in Applied Geophysics (물리탐사에 유용한 좌표계 회전 정리)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • This tutorial summarizes the coordinate transforms for formulating geophysical problems. To ensure mathematical consistency, this discussion begins with the right-hand rule. Further, the concepts of active and passive transforms are introduced. By extending these concepts, the coordinate transform and its inverse between two coordinates are related to the matrix transpose. The yaw-pitch-roll rotation and the azimuth-deviation-tool face rotation transforms are described as the most frequently used schemes, and the relation between the Rodrigues' rotation formula and these two transforms are mathematically explained. The "Gimbal Lock" problem inherent in yaw-pitch-roll rotation is schematically presented and mathematically derived. As a useful tool overcome this problem, the principle and usage of the quaternion is also described.