• Title/Summary/Keyword: experimental mechanics

Search Result 1,873, Processing Time 0.02 seconds

Buckling of cylindrical shells under external pressure proposition of a new shape of self-stiffened shell

  • Araar, M.;Jullien, J.F.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.451-460
    • /
    • 1996
  • We propose a new shape of cylindrical shell formed by multiples vaults which gives a self-stiffening against buckling. By an experimental and numerical study of cylindrical shells with a repeated defect, on the circumferential direction made only of outside oriented wave-defects, we show that multiple vault cylindrical shells can have a good behaviour in buckling. An optimal behaviour is obtained by optimization of the vaults number, with conduces to a special multiple vault cylindrical shell named "ASTER shell".

Effect of Braid Structure on Yarn Cross-Sectional Shape

  • Lyons, Jason;Pastore, Christopher M.
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.182-186
    • /
    • 2004
  • The effect of braid construction parameters on yarn cross-sectional shape is presented in this paper. The location of the yam within the braid unit cell is quantified by a compaction factor. A range of braided fabrics were produced and optically measured for actual yarn cross-sectional shape. A comparison of the theoretical and experimental values shows good correlation. Design curves can be produced with the developed model to allow selection of appropriate braid process parameter to create yarns with desired cross-sectional geometries.

A Study on Circular Contour Machining Error

  • Namkoong, Chaikwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.100-105
    • /
    • 2002
  • The comprehensive system analysis for contour milling operation and its error has performed in this study. The obtained experimental results were from the practical points of view. In down-milling operation the contour error curve illustrates bigger thean actual workpiece radius. The contour error increased when the cutter loads increased. Through the procedural evaluation, it could ascertain the characteristics of generation mechanics in circular contour machining error, and the weight of each factors.

Application of return mapping technique to multiple hardening concrete model

  • Lam, S.S. Eddie;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2000
  • Computational procedure within the framework of return mapping technique has been presented to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of the integration technique is verified and compared with available experimental data. Computational efficiency is demonstrated by comparing with results based on elasto-plastic tangent.

Inelastic buckling of tapered members with accumulated strain

  • Kim, M.C.;Lee, G.C.;Chang, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.611-622
    • /
    • 1995
  • This paper is concerned with inelastic load carrying capacity of tapered steel members with or without accumulated plastic strains resulted from previous loading histories. A finite element program is developed using stiffness matrices of tapered members and is applicable for analyses with material and geometric nonlinearity. Results of analyses are compared with other available solutions and with experimental results.

Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • This paper presents the findings of an experimental study to evaluate retrofit methods which address particular weaknesses that are often found in reinforced concrete structures, especially older structures, namely the lack of the required flexural and shear reinforcement within the columns and the lack of the required shear reinforcement within the joints. Thus, the use of a high-strength fiber jacket for cases of post-earthquake and pre-earthquake retrofitting of columns and beam-column joints was investigated experimentally. In this paper, the effectiveness of the two jacket styles was also compared.

Electrorheology of HMDA Coupled Chitosan Succinate Suspension as an Anhydrous ER Fluid

  • Kong, Seong-Wook;Kim, Seung-Wook;Lee, Sang-Soon;Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.7-9
    • /
    • 2008
  • The electrorheology of the HMDA coupled chitosan succinate suspension in silicone oil was investigated. HMDA coupled chitosan succinate suspension showed a typical ER response upon application of an electric field. The shear stress for the HMDA coupled chitosan succinate suspension exhibited an electric field power of 2.0. The experimental results for the HMDA coupled chitosan succinate suspension was found to be an anhydrous ER fluid.

Rheology of Hollow Polyaniline Gutarate Suspension Under DC Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.36-38
    • /
    • 2008
  • The electrical and rheological behavior of the hollow polyaniline glutarate suspension in silicone oil was investigated. Hollow polyaniline glutarate suspension showed a typical ER response (Bingham flow behavior) under a DC electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.95 power on the electric field. The experimental results for the hollow polyaniline glutarate suspension behaved as an ER fluid.

Moving force identification from bridge dynamic responses

  • Yu, Ling;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.369-374
    • /
    • 2005
  • A big progress has been made for moving force identification from bridge dynamic responses in recent years. Current knowledge and the potentials on moving force identification methods are reviewed in this paper under main headings below: background of moving force identification, experimental verification in laboratory and its application in field.