• Title/Summary/Keyword: experimental aerodynamics

Search Result 128, Processing Time 0.027 seconds

Correlation of aerodynamic forces on an inclined circular cylinder

  • Cheng, Shaohong;Tanaka, Hiroshi
    • Wind and Structures
    • /
    • v.8 no.2
    • /
    • pp.135-146
    • /
    • 2005
  • Divergent galloping-like motion of a dry inclined cable has been observed in a limited number of experimental studies, which, due to the uncertainties in its onset conditions, has induced serious concerns in the bridge stay cable design. A series of dynamic and static model wind tunnel tests have been carried out to confirm the existence of the phenomenon and clarify its excitation mechanism. The present paper focuses on exploring the spatial flow structure around an inclined cable. The pattern of resultant aerodynamic forces acting at different longitudinal locations of the model and the spatial correlation of the forces are examined. The results lead one step closer in revealing the physical nature of the phenomenon.

Aerodynamic behaviour of an inclined circular cylinder

  • Cheng, Shaohong;Larose, Guy L.;Savage, Mike G.;Tanaka, Hiroshi
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 2003
  • Galloping instability of dry inclined cables of cable-stayed bridges has been reported by Japanese researchers. A suggested stability criterion based on some experimental studies in Japan implies that many of stay cables would be expected to suffer galloping instability, which, if valid, would cause serious difficulty in the design of cable-stayed bridges. However, this is not the case in reality. Thus, it is practically urgent and necessary to confirm the validity of this criterion and possible restriction of it. In the present study, a 2D sectional cable model was tested in the wind tunnel, and effects of various physical parameters were investigated. It is found that the stability criterion suggested by Japanese researchers is more conservative than the results obtained from the current study.

Numerical Analysis of Flow Characteristics in the Wells Turbine for Wave Power Conversion (파력 발전용 웰즈터빈의 유동특성에 관한 수치적 연구)

  • Lee, Hyeong-Gu;Kim, Jeong-Hwan;Lee, Yeon-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.325-333
    • /
    • 2000
  • The aerodynamics of the Wells turbine has been studied using a 3-dimensional, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-dimensional numerical grid is based upon that of an experimental test rig. The 3-dimensional Wells turbine model, consisting of approximate 220,000 cells is tested at four axial flow rates. In the calculations the angle of attack has been varied between $10^{\circ}$ and $30^{\circ}$ of blades. Representative results from each case are presented graphically and analyzed. It is concluded that this method holds much promise for future development of Wells turbines.

  • PDF

A Study on Aerodynamic and Noise Characteristics of a Sirocco Fan for Residential Ventilation (주거환기용 시로코홴의 공력 및 소음 특성 연구)

  • Kim, Jin-Hyuk;Song, Woo-Seog;Lee, Seung-Bae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • This paper presents a procedure for the aerodynamic and aeroacoustic characteristics of a sirocco fan. For the aerodynamic and aeroacoustic analyses of the sirocco fan, three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations are solved with a shear stress transport turbulence model for turbulence closure. The flow analyses were performed on a hexahedral grid using a finite-volume solver. The validation of the numerical results is performed by comparing with experimental data for the pressure, efficiency and power. The internal flow analyses of the sirocco fan are performed to understand the unstable flow phenomenon on the casing for the wall pressure and internal flow characteristics at each position. It was found that fluctuation of pressure and locally concentrated noise source are observed near the cut-off and expansion regions of the casing.

Aerodynamic Performance Analysis of a Shrouded Rotor Using an Unstructured Mesh Flow Solver

  • Lee H. D.;Kwon O. J.;Joo J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.263-265
    • /
    • 2003
  • The aerodynamic performance of a shrouded tail rotor in hover has been studied by using a compressible inviscid flow solver on unstructured meshes. The numerical method is based on a cell­centered finite-volume discretization and an implicit Gauss-Seidel time integration. The results show that the performance of an isolated rotor without shroud compares well with experiment. In the case of a shrouded rotor, correction of the collective pitch angle is made such that the overall performance matches with experiment to account for the uncertainties of the experimental model configuration. Details of the flow field compare well with the experiment confirming the validity of the present method.

  • PDF

UNSTEADY AERODYNAMIC ANALYSIS FOR HELICOPTER ROTOR IN HOVERING AND FORWARDING FLIGHT USING OVERSET GRID (중첩격자를 이용한 제자리 및 전진 비행하는 헬리콥터 로터의 비정상 공력해석)

  • Im, Dong-Kyun;Wie, Seong-Yong;Kim, Eu-Gene;Kwon, Jang-Hyuk;Lee, Duck-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.77-81
    • /
    • 2007
  • In this paper, helicopter aerodynamics is simulated in hovering and forwarding flighst. The governing equation is the unsteady Euler equation. To consider the blade motion and moving effects, an overset grid technique is applied in this simulation. At the boundary, the Riemann invariants condition is used for inflow and outflow. To validate this method, the result is compared with Caradonna-Tung's experimental data.

  • PDF

Experimental study to assess the aerodynamic effects for conventional train passage on station platform (기존선 열차가 승강장을 통과할 때 발생하는 공기역학적인 문제들에 대한 기초실험 연구)

  • Kim, Dong-Hyeon;Shin, Min-Ho;Kwon, Hyun-Goo;Song, Moon-Shuk
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1875-1880
    • /
    • 2003
  • Measurements of wind flow and pressure fluctuations induced by train passing on station platform have been conducted. Test conventional trains have a different nose shapes - bluff nose and wedged nose. The bluff nose train influence peak value of pressure fluctuations on station platform three times more than the wedged nose train for train speed of 108 km/h. Also, air flow induced by the bluff nose train passing is three times more than the wedged nose train passing. Current study shows that the gust induced by the bluff nose conventional train may threaten a passenger's safety on station platform in proximity to train passage.

  • PDF

Computational Study of the Vortical Flow over a Yawed LEX-Delta Wing at a High-Angle of Attack (고영각 Yawed LEX-Delta 익에서 발생하는 와유동의 수치해석)

  • Kim, Tae-Ho;Kweon, Yong-Hun;Kim, Heuy-Dong;Sohn, Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2109-2114
    • /
    • 2003
  • The vortex flow characteristics of a yawed LEX-delta wing at a high-angle of attack are studied using a computational analysis. The objective of the present study is to investigate and visualize the effects of the yaw angle, the development and interaction of vortices, the relationship between the suction pressure distributions and the vortex flow characteristics. Computations are applied to the three dimensional, compressible, Navier-Stokes Equations. In computations, the yaw angle is varied between 0 and 20 degree at a high-angle of attack. Computational predictions are compared with the previous experimental results.

  • PDF

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

Aerodynamic characteristics of a vertical axis wind turbine blade (수직축 풍력터빈 블레이드의 공기역학적 특성)

  • Shin, Jee-Young;Son, Young-Seok;Cha, Duk-Guen;Lee, Cheol-Gyun;Hwang, I-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.877-884
    • /
    • 2006
  • The objective of this study is to investigate the aerodynamic characteristics of a vertical axis wind turbine blade as the basic study of a design of a vertical axis wind turbine. The lift and drag coefficients of the various shape of the vortical axis wind turbine blades are analyzed and compared using the CFD code Fluent. To validate the numerical analysis, the predicted results of the Fluent are compared with those of the Xfoil code and the experimental results. We conclude that the program Fluent can be used to predict the aerodynamics of the wind turbine blade. By comparing the predicted results of the aerodynamic characteristics of the different shape of the blades, an appropriate shape of the blade is suggested to design the vortical axis wind turbine blade.