• Title/Summary/Keyword: expansive soil

Search Result 37, Processing Time 0.025 seconds

Numerical Analysis of Belled Shaft Foundation in Thick Pusan Clays (대심도 부산점토에 적용된 종저말뚝(Belled Shaft foundation)의 수치해석 연구)

  • Rao, K.G.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.530-535
    • /
    • 2006
  • The Pusan clays are soft and thick deposits and in some places, they reach even up to 50-70m. So, the pile foundations are inevitable in almost all cases. But they are significantly expansive when the length of the pile reaches about 70m. In this study, a comprehensive parametric study has been carried out in order to reduce the pile length and number of piles required in turn the cost of the foundation for particular building. A belled shaft pile has been optimized for a typical soil profile using the PLAXIS (FEM code). These results have shown a new direction of the pile foundation in Pusan, Korea. The results including the variation of contact pressures at the bottom of the bell, optimization of the angle of the bell and height of the bell in terms of the diameter of the shaft. And also, the design curves have been generated so that they can be directly used for design of belled shaft foundations. However, the structural strength criterion is being checked in the concerned laboratory.

  • PDF

On Prediction of Ground Heave and the Performance of the Isolation-tube Shafts (지반 괭창량 예측과 분리형 현장 타설 말뚝의 거동)

  • 김명학
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.111-128
    • /
    • 1998
  • An experimental study, which included four 305mm-diameter test shafts, one reference shaft with standard design and three test shafts with isolation tubes, is described. The soil was also soil heave and shrinkage that occur during suction changes at the field site. The test shafts were monitored for a period of about 18 months. Maximum ground movements exceeding 35mm were observed. Movements of only 1 to 2mm were observed in the test shafts with isolation tubes, while movements of 4 to 5mm were observed in the reference shaft. A simple computing model was developed to predict, based on suction changes, the maximum amount of ground heave. Relationship among suction. total stress, and volumetric strain was abtained in the laborstory. This relationship, used as inputs to the predictive model, enabled the computation of the maximum ground heave.

  • PDF

Groundwater Level Trend Analysis for Long-term Prediction Basedon Gaussian Process Regression (가우시안 프로세스 회귀분석을 이용한 지하수위 추세분석 및 장기예측 연구)

  • Kim, Hyo Geon;Park, Eungyu;Jeong, Jina;Han, Weon Shik;Kim, Kue-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.30-41
    • /
    • 2016
  • The amount of groundwater related data is drastically increasing domestically from various sources since 2000. To justify the more expansive continuation of the data acquisition and to derive valuable implications from the data, continued employments of sophisticated and state-of-the-arts statistical tools in the analyses and predictions are important issue. In the present study, we employed a well established machine learning technique of Gaussian Process Regression (GPR) model in the trend analyses of groundwater level for the long-term change. The major benefit of GPR model is that the model provide not only the future predictions but also the associated uncertainty. In the study, the long-term predictions of groundwater level from the stations of National Groundwater Monitoring Network located within Han River Basin were exemplified as prediction cases based on the GPR model. In addition, a few types of groundwater change patterns were delineated (i.e., increasing, decreasing, and no trend) on the basis of the statistics acquired from GPR analyses. From the study, it was found that the majority of the monitoring stations has decreasing trend while small portion shows increasing or no trend. To further analyze the causes of the trend, the corresponding precipitation data were jointly analyzed by the same method (i.e., GPR). Based on the analyses, the major cause of decreasing trend of groundwater level is attributed to reduction of precipitation rate whereas a few of the stations show weak relationship between the pattern of groundwater level changes and precipitation.

A Hardening Properties of Eco-Friendly SCW Grouting Material (친환경 SCW공법용 그라우팅재의 경화특성)

  • Jo, Jung-Kyu;Park, In-Wook;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2018
  • Since the current method of SCW cement milk pouring method uses one to one ratio of cement milk with OPC, there are some problems such as drying shrinkage, increased cost, difficulty of controlling mix proportions for various conditions of applied soil, and precipitation of $Cr^{6+}$ due to the excessively used cement. Specifically, in aspect of sustainability issues of cement manufacturing, the consumption of cement should be reduced. Hence, in this research, as a replacement of cement for SCW method, blast furnace slag with sulfate or alkali as a stimulant, and expansive admixture were used. By using blast furnace slag as a hardening composite of SCW, there are many advantages such as free controllable mix proportions, rapid setting time with less mud occurrence, less cost with less energy for mixing, constant strength development, and less precipitation of $Cr^{6+}$. Regarding the alternative composites for SCW, in this research, durability and chloride resistance were evaluated.

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Grouting Injection Effectiveness of a Permeable Compacting Grout using Permeable Compaction Type Packer (침투다짐형 팩커를 이용한 침투다짐 그라우트의 주입 효과)

  • Park, Sung-Yong;Shim, Houng-Gen;Kang, Hee-Jin;Lim, One-Bin;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Permeating injection is commonly known as an ideal type of injection in grouting reservoir embankment, yet often-combined permeating and fracturing injection grouting operation can disturb the original soil. A grouting method has been regarded as effective and developed to ameliorate the possible disturbance problem. It involves compaction grouting with low expansive pressure near the injection hole and repetitive injection and compaction with grout material that allows ideal permeating injection. This thesis develops Hybrid Grout (ie. HG grout) that allows various application in any ground condition combined together, has high fineness and low viscosity, and expands permeation injection to silty sand. It researches on the injection effect of permeable compaction grout which is done with PC packer and is a combination of HG grout and expansion agent to obtain permeation compaction effect on the area near grout injection spot by developing Permeable Compaction Type Packer(ie. PC packer). As the developed PC packer, HG grout, and and expansion agent (HI-E) are applied to reservoir embankment reinforcement grouting, possibile permeation compaction effect that satisfies reservoir embankment grouting standard is confirmed according to the research.

A Study on the Abstract Types of the Contemporary Landscape Design (현대조경디자인의 추상유형에 관한 연구)

  • Kim, Jun-Yon;Lee, Haeung-Yul;Bang, Kwang-Ja
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.6
    • /
    • pp.1-11
    • /
    • 2009
  • This study focuses on Abstract Types in Contemporary Landscape Design. The formation and artistry of contemporary landscape design reveals many areas which Previously have not been able to be expressed in scenic landscape thanks to the deviation of the genre in contemporary landscape and the hybridization that has occurred among architecture, landscape and art genres. The focus of this study is basic research concerning "the abstract", which is used as a creative artistic theory in a variety of art fields such as landscape, architecture and painting. Through a theoretical establishment of "the abstract", its process of change, and the discovery of its contemporary principles, the relationship between each art field in landscapes and the formation of the abstract, abstract language, and abstract properties have been studied. The use of the abstract in contemporary landscape design can be classified in three ways: Inductive abstract representing conceptual transcendental symbols not logically but rather through intuition and transcendental cognition to display the inner expressions, ideas and minds of the artists. Second, a deductive abstract represents an expansive, logical model for the simplification of objects, distortion, exaggeration based on knowledge and logical reasoning about objective fact based on traditional realism. The complexity of the abstract is a concept that is bound to both the deductive & inductive abstract. As a major trend, the concept of "The abstract" in contemporary landscape has been putting forth ever-deeper roots. New trends like abstract works and landscape architecture reflecting the artist's inner expression, in particular, will provide fertile soil for landscape in the future. Further research about the concept of "the abstract" will also be necessary in the time to come.