• Title/Summary/Keyword: expansive corrosion products

Search Result 5, Processing Time 0.017 seconds

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Effect of Rebar Corrosion on the Onset of Cracks in Cover Concrete (철근부식에 의한 콘크리트의 균열발생에 관한 연구)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.771-774
    • /
    • 1999
  • This study was carried out to quantitatively investigate the amount of corrosion at the time of onset of cracks in cover concrete due to rebar corrosion. In this experiments, the accelerated galvanostatic corrosion method was carried out. FEM analyses were also conducted to investigate the expansive behaviors due to rebar corrosion and the mechanical properties of corrosion products. As a result, it was concluded that the corrosion ratio at the time of onset of cracks in cover concrete was 3% by weight. The onset of cracks in cover concrete due to rebar corrosion could be analyzed by the finite element method.

  • PDF

Cracking Behavior of Reinforced Concrete Structures due th Reinforcing Steel Corrosion (철근부식에 의한 철근콘크리트 구조물의 균열거동)

  • 오병환;김기현;장승엽;강의영;장봉석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.851-863
    • /
    • 2002
  • Corrosion products of reinforcement in concrete induce pressure to the adjacent concrete due to the expansion of steel. This expansion causes tensile stresses around the reinforcing bar and eventually induces cracking through the concrete cover The cracking of concrete cover will adversely affect the safety as well as the service life of concrete structures. The purpose of the this study is to examine the critical corrosion amount which causes the cracking of concrete cover. To this end, a comprehensive experimental and theoretical study has been conducted. Major test variables include concrete strength and cover thickness. The strains at the surface of concrete cover have been measured according to the amount of steel corrosion. The corrosion products which penetrate into the pores and cracks around the steel bar have been considered in the calculation of expansive pressure due to steel corrosion. The present study indicates that the critical amount of corrosion, which causes the initiation of cracking, increases with an increase of compressive strength. A realistic relation between the expansive pressure and average strain of corrosion product layer in the corrosion region has been derived and the representative stiffness of corrosion layer was determined. A concept of pressure-free strain of corrosion product layer was introduced to explain the relation between the expansive pressure and corrosion strain. The proposed theory agrees well with experimental data and may be a good base for the realistic durability design of concrete structures.

An Experimental Study on the Durability Properties of Repair Mortar for Sewer Spread with Liquefied Antibiotic (액상 항균제를 도포한 하수시설용 단면복구재의 내구특성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae-bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.211-214
    • /
    • 2005
  • Recently, Deterioration of the concrete sewer concrete structures by biochemical corrosion has been issued and a development of the inhibition system of corrosion that has been demanded. The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and breakless of concrete. Also, a sulphuric acid reacts with calcium hydroxide to from $CaSO_4\;\cdot\;2H_2O$. This reaction accounts for consumption of the calcium hydroxide present in hardened cement paste. In this study, To present from biochemical corrosion of the sewer repair mortar that was spread with liquefied antibiotic and then its experimental properties were experimentally investigated and to estimate the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the durability properties of restorative mortar spread with antibiotics. Also, testing items such as carbonation depth, choloride ion penetration depth and chemical resistance was tested to estimate the durability properties in third study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And carbonation depth, choloride ion penetration depth and chemical resistance of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF