• Title/Summary/Keyword: expansion velocities

Search Result 50, Processing Time 0.025 seconds

AN OLD SUPERNOVA REMNANT WITHIN AN HII COMPLEX AT $1{\approx}173{\circ}$ : FVW172.8+1.5

  • Gang, Ji-Hyeon;Gu, Bon-Cheol;Salter, Chris
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We present the results of HI 21 cm line observations to explore the nature of the high-velocity (HV) HI gas at - 173${\circ}$, which appears as faint, wing-like, Hi emission that extends to velocities beyond those allowed by Galactic rotation in the low-resolution surveys. We designate this feature as Forbidden Velocity Wing (FVW) 172.8+1.5. Our high-resolution Arecibo HI observations show that FVW 172.8+1.5 is composed of knots, filaments, and ring-like structures distributed over an area of a few degrees in extent. These HV HI emission features are well correlated with the HII complex G173+1.5, which is composed of five Sharpless HII regions distributed along a radio continuum loop of size 4.4${\times}$3.4, or -138 pc ${\times}$ 107 pc, at a distance of 1.8 kpc. G173+1.5 is one of the largest star-forming regions in the outer Galaxy. The HV HI gas and the radio continuum loop seem to trace an expanding shell. Its derived HI parameters including large expansion velocity (55 km/s) imply the SNR interpretation. Hot xray emission is detected within the HII complex, which also supports its SNR origin. The FVW172.8+1.5 is most likely the products of a supernova explosion(s) within the HII complex, possibly in a cluster that triggered the formation of these HII regions.

  • PDF

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Audio Processing Algorithm Using Base Line Shift Method in Pulsed Doppler Systems (PW 도플러 시스템에서 Base Line 이동 기법을 이용한 오디오 신호 처리 방법)

  • 김기덕;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.275-281
    • /
    • 1999
  • Conventional PW Doppler systems suffer from the ambiguity of measured blood velocities due to the spectrum aliasing when the corresponding Doppler frequencies are greater than the Nyquist frequency. Base-line shift is a customary method for dealiasing the Doppler spectrums. I lowever, Doppler audio signals still remain unchanged even when the base-line shift method is applied. This paper de scribes an method for dealiasing both the Doppler spectra and audio signals by using sampling rate expansion, frequency shifting, and filtering poerations. For undirectional flows, the method can increase the maximum detectable Doppler frequency from the Nyquist limit of one-half of the Pulse Repetition Frequency(PRF) to the PRF. Experiments with real data have been performed to verify the proposed method.

  • PDF

Instability of Evaporation Fronts in the Interstellar Medium

  • Kim, Jeong-Gyu;Kim, Woong-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2013
  • The neutral component of the interstellar medium (ISM) is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that the CNM--WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) in terrestrial flames. To explore dynamical consequences of the DLI in the ISM, we perform a linear stability analysis of the DLI including the effect of thermal conduction as well as nonlinear hydrodynamic simulations. We find that the DLI is suppressed at short length scales via heat transport. The linear growth time of the fastest growing mode is proportional to the square of the evaporation flow speed of the CNM relative to the interface and is typically >10 Myr. In the nonlinear stage, perturbations grow into cusp-like structure protruding toward the WNM, and soon reach a steady state where the evaporation rate is increased by a factor of 2 compared to the initial state. We demonstrate that the amplitude of the interface distortion and enhancement in evaporation rate are determined primarily by the density ratio between the CNM and WNM. Given quite a long growth time and highly subsonic velocities at saturation, the DLI is unlikely to play an important role in the ISM dynamics.

  • PDF

The Kinematic Properties of Young Stars in NGC 281: its implication on star formation process (NGC 281의 젊은 별들의 운동학적 특성)

  • Kim, Seulgi;Lim, Beomdu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.81.1-81.1
    • /
    • 2021
  • Stellar kinematics is a useful tool to understand the formation and evolution of young stellar systems. Here, we present a kinematic study of the HII region, NGC 821, using the Gaia Early Data Release 3. NGC 281 contains the open cluster IC 1590. This cluster has a core and a low-stellar density halo. We detect a pattern of cluster expansion from the Gaia proper motion vectors. Most stars radially escaping from the cluster are distributed in the halo. We measure the 1-dimensional velocity dispersion of stars in the core. The velocity dispersion (1 km/s) is comparable to the expected virial velocity dispersion of this cluster, and therefore the core is at a virial state. The core has an initial mass function shallower than that of the halo, which is indicative of mass segregation. However, there is no significant correlation between stellar masses and tangential velocities. This result suggests that the mass segregation has a primordial origin. On the other hand, it has been believed that the formation of young stars in NGC 281 West was triggered by feedback from massive stars in IC 1590. We investigate the ages of stars in the two regions, but the age difference between the two regions is not comparable to the timescale of the passage of an ionization front. Also, the proper motion vectors of the NGC 281 West stars relative to IC 1590 do not show any systematic receding motion from the cluster. Our results suggest that stars in NGC 281 West might have been formed spontaneously. In conclusion, the formation of NGC 281 can be understood in the context of hierarchical star formation model.

  • PDF

Cosmology with Type Ia Supernova gravitational lensing

  • Asorey, Jacobo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2019
  • In the last decades, the use of type Ia supernovae (SN) as standard candles has allowed us to understand the geometry of the Universe as they help to measure the expansion rate of the Universe, especially in combination with other cosmological probes such as the study of cosmic microwave background radiation anisotropies or the study of the imprint of baryonic acoustic oscillations on the galaxy clustering. Cosmological parameter constraints obtained with type Ia SN are mainly affected by intrinsic systematic errors. But there are other systematic effects related with the correlation of the observed brightness of Supernova and the large-scale structure of the Universe such as the effect of peculiar velocities and gravitational lensing. The former is relevant for SN at low redshifts while the latter starts being relevant for SN at higher redshifts. Gravitational lensing depends on how much matter is along the trajectory of each SN light beam. In order to account for this effect, we consider a statistical approach by defining the probability distribution (PDF) that a given supernova brightness is magnified by a given amount, for a particular redshift. We will show that different theoretical approaches to define the matter density along the light trajectory hugely affect the shape and width of the PDF. This may have catastrophic effects on cosmology fits using Supernova lensing as planned for surveys such as the Dark Energy Survey or future surveys such the Large Synoptic Survey Telescope.

  • PDF

The kinematic properties of stellar groups in the Rosette Nebula: its implication on their formation process

  • Lim, Beomdu;Hong, Jongsuk;Naze, Yael;Park, Byeong-Gon;Hwang, Narae;Lee, Jeong-Eun;Yun, Hyeong-Sik;Park, Sunkyung;Yi, Hee-Weon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2020
  • The Rosette Nebula is the most actively star-forming region in the Monoceros OB2 association. This region hosts more than three stellar groups, including the most populous group NGC 2244 at the center of the region and the smaller stellar groups around the border of the H II bubble. To trace their formation process, we investigate the kinematic properties of these groups using the Gaia astrometric data and high-resolution spectra taken from observation with Hectochelle on MMT. The proper motions of stars in NGC 2244 show a pattern of radial expansion. The signature of cluster rotation is also detected from their radial velocities. On the other hand, the small groups appear to be physically associated with some clouds at the ridge of the H II region. Among them, the group near the eastern pillar-like gas structure shows the signature of feedback-driven star formation. In this presentation, we will further discuss the formation process and dynamical evolution of the stellar groups in the Rosette Nebula, based on the observation and results of N-body simulations.

  • PDF

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.