• Title/Summary/Keyword: expansion chamber

Search Result 207, Processing Time 0.024 seconds

Evaluation of OCR in Fine Grained Soil by Piezocone Tests (피에조콘 관입 시험에 의한 OCR 평가)

  • Lim, Beyong-Seock
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.561-568
    • /
    • 2000
  • 본 연구의 목적은 Piezocone 관입시험을 이용한 연약지반의 OCR 평가에 있어 기존의 여러 가지 해석방법들과 최근에 새롭게 제안된 방법들을 실내 모형토조에서 실측된 피에조콘 관입 실험치에 적용하여 각 해석방법들의 차이와 장단점들을 비교 분석하는데 있다. 본 연구의 연구실험방법으로는, Piezocone 관입을 위한 연약 모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Free Stress 상태의 Slurry를 45일간 압밀시킨후 Automatic Computer Control Calibration Chamber (LSU/CALCHAS; Louisiana Slate University Calibration Chamber System)에 옮긴후 다시한번 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 모형지반은 여러 가지 Boundary Condition들과 Stress Condition 그리고 Stress History등을 달리하여 총 5개의 지반을 조성하였다. 관입시험은 총 25개의 Piezocone 관입이 수행되어졌고, 그중 4개는 Standard 10 cm2 Piezocone이고, 나머지 21개는 Miniature Piezocone이 사용되었다. Piezocone 실험치들에 대한 여러 가지 OCR 해석방법 적용결과, Schmertmann방법은 5개 모형지반 모두에서 과다한 OCR평가를 보였으며, $B_{q}$ 방법은 일부모형지반에서 음의 OCR값으로 계산되어졌다. 그러나, Critical-Stale Soil Mechanics 와 Cavity Expansion 이론에 근거하여 Mayne(1991), Kurup(1993), Tumay et al (1995) 들이 제안한 OCR 평가방법들은 실험치와 잘맞는 경향을 보여주었다. 이와같은 이론 모델값들의 차이는 응력조건(Stress Condition)과 경계조건(Boundary Condition)들에 대한 각 해석방법들의 고려정도에 따른 결과로 판단된다.

  • PDF

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.

A Study on Evaporation Characteristics and Concentration Distribution of LPG fuel using Light Extinction Method (광흡수법을 이용한 LPG 연료의 증발특성 및 연료 농도 분포에 관한 연구)

  • Kim, D.K.;Cho, G.B.;Oh, S.M.;Choi, K.N.;Jeong, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.708-714
    • /
    • 2001
  • Although LP gas has lots of advantages, there has been limitation in application for automotive engine due to the several disadvantages, such as power decrease, complex fuel supply unit, and back fire etc. However LP gas direct injection engine has possibility to solve the problems above mentioned. LEM(Light Extinction Method) was employed for analysis of spacial and temporal distribution of LP gas which is directly injected into combustion chamber under various pressure and temperature conditions. The results from CVC(Constant Volume Chamber) were compared to those of RICEM(Rapid Induction, Compression and Expansion Machine) which simulate early- and late injection of direct injection engine. LPG fuel spray is affected by temperature and pressure in evaporation characteristics but it is more benefit to direct injection engine in every way such as, fuel distribution, evaporating speed and well wetting reduction.

  • PDF

Measurement of Mechanical Properties and Constitutive Modeling of Woods (목재 물성 측정 및 변형 예측 모델 개발)

  • Kim, K.W.;Kim, D.H.;Kim, M.S.;Ko, Y.J.;Ha, B.K.;Kim, H.S.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.363-369
    • /
    • 2018
  • This study measured the mechanical properties of an ash wood under various temperature and humidity conditions and a finite element model was developed to predict the behavior of the wood. A humidity-controlled chamber was developed and used for measuring the dimensional changes of woods under various humidity conditions. The thermal expansion coefficient and the elastic stiffness constants were measured by using a thermal chamber and the three-point bending test along the three principal axes of the wood. A constitutive model was proposed to describe the moisture content and temperature dependent behavior of wood. The proposed model was validated for the warping test of a wood plate. The warping of the plate was calculated using the finite element method. The calculated amount of warping was in consistence with the measurements.

New tunnel reinforcement method using pressurized cavity expansion concept (천공홀 가압 팽창 개념을 도입한 터널 보조 신공법 연구)

  • Cho, In-Sung;Park, Jeong-Jun;Kim, Jong-Sun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.407-416
    • /
    • 2010
  • A new tunnel auxiliary method is proposed in this paper which utilizes the concept of cavity expansion for tuunel reinforcement by forming an umbrella arch on the roof of tunnel. When an inflatable pipe is inserted and expanded by pressure in the bore hole of umbrella arch, the ground around the bore hole can be compacted so that the stress condition above the tunnel perimeter is favorably changed. In order to verify the reinforcement effect of new concept, pilot-scale chamber test, trapdoor test and numerical analysis were performed and compared. In pilot-scale chamber test, three types of inflatable pipes are tested to verify the capability of expansion, and the results arc compared with analytical results obtained by applying cavity expansion theory and with results obtained from finite clement analysis, and the experimental results showed agreeable matches with analytical and numerical ones. Numerical analysis of a tunnel and trapdoor test applied with the inflatable pipes are also performed to figure out the reinforcement effect of the proposed techniques, and the results implied that the new method with 3 directional inflatable pipe (no pressure to downward direction) can contribute to reduce tunnel convergence and face settlement.

Comparison of Small Current Interruption Capability Depending on the Type of Interrupter (차단부 형태에 따른 소전류 차단성능 비교)

  • Song, Ki-Dong;Chong, Jin-Kyo;Kim, Hong-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.362-368
    • /
    • 2006
  • This paper presents the results of a small capacitive current interruption test for the three types of interrupter which are called 'serial type', 'parallel/separated type' and 'puffer type' according to the arrangement of the thermal expansion chamber and the puffer cylinder. After the preconditioning test the small current interruption capability of the 'puffer type' decreased, on the contrary, that of the hybrid interrupters increased. A number of reignition have been occurred in the 'serial type' hybrid interrupter and the change of small current interruption capability after preconditioning test is mainly influenced by the structure of interrupter. Finally it has been proved that the 'parallel/separated type' hybrid interrupter has the best interruption performance through the verification tests.

Interruption Capability of Hybrid Type GCB with High Opening Speed (고속도 개극 시의 복합소호 가스차단기의 차단특성)

  • Song Ki-Dong;Chong Jin-Kyo;Park Kyong-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.408-413
    • /
    • 2005
  • This paper presents the basic design technology on the hybrid type GCB(gas circuit breakers) through the test results. The three type hybrid interrupters according to the arrangement of the thermal expansion chamber and the puffer cylinder(they are called 'serial type', ' parallel/exchanged type ,' and ' parallel/separated type ' respectively in this work) were designed and manufactured and then the tests of operating characteristics and interrupting were performed using a simplified synthetic test facility. The interruption capability with the type and the opening speed and the pressure rise which is required to interrupt were examined. The change of pressure rise with the number of interruption was given quantitatively and therefore the pressure rise can be predicted. Finally, it was shown that the interruption capability tends to increase with the increasing of opening speed in the puffer type; however, the hybrid type interrupter has a different interruption characteristic.

Stresses in FGM pressure tubes under non-uniform temperature distribution

  • Eraslan, Ahmet N.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • The effects of material nonhomogeneity and nonisothermal conditions on the stress response of pressurized tubes are assessed by virtue of a computational model. The modulus of elasticity, the Poisson's ratio, the yield strength, and the coefficient of thermal expansion, are assumed to vary nonlinearly in the tube. A logarithmic temperature distribution within the tube is proposed. Under these conditions, it is shown that the stress states and the magnitudes of response variables are affected significantly by both the material nonhomogeneity and the existence of the radial temperature gradient.

Acoustic Analysis of a Duct with Mean Flow by Use of FEM (유한요소법을 이용한 유체속도가 고려된 덕트의 음향특성 해석)

  • 서영수;정의봉;윤상돈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1026-1031
    • /
    • 2002
  • This paper shows the effect of mean flow in duct. The potential equation of duct with mean flow is obtained. A finite element method(FEM) is used to predict acoustic performance of duct with mean flow. The formulation of the finite element method is derived for duct taking into consideration of the convective effect of mean flow. A simple duct, simple expansion chamber and a duct with resonator are implemented to show the effects of the mean flow.

  • PDF

Thermal Expansion Coefficient Measurement of STS430 by Laser Speckle Interferometry (레이저 스페클간섭법에 의한 STS430의 열팽창계수 측정)

  • 김경석;이항서;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.29-33
    • /
    • 2004
  • This paper presents ESPI system for the measurement of thermal expansion coefficient of STS430 up to 1,000$^{\circ}C$. Existing methods, strain gauge and moire have the limitation of contact to object and do not supply the coefficient up to 800$^{\circ}C$. There needs to measure the data up to 800$^{\circ}C$, because heat resistant materials have high melting temperature up to 1,000$^{\circ}C$. In previous studies related to thermal strain analysis, the quantitative results are not reported by ESPI at high temperature, yet. In-plane ESPI and vacuum chamber for the reduction of air turbulence and oxidation are designed for the measurement of the coefficient up to 1,000$^{\circ}C$and speckle correlation fringe pattern images are processed by commercial image filtering tool-smoothing, thinning and enhancement- to obtain quantitative results, which is compared with references data. The comparison shows two data are agreed within 4.1% blow 600$^{\circ}C$ however, there is some difference up to 600$^{\circ}C$. Also, the incremental ratio of the coefficient is changed up to 800$^{\circ}C$. The reason is the phase transformation of STS430 probably begins at 800$^{\circ}C$.

  • PDF