• Title/Summary/Keyword: expanded metal sheet

Search Result 14, Processing Time 0.02 seconds

A Study on the Shear Deformation Behavior of Inner Structure-Bonded Sheet Metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Chung W. J.;Yang D. Y.;Kim J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.257-262
    • /
    • 2005
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

A Study on the Shear Deformation Behavior of Inner Structure-Bonded sheet metal (접합판재의 전단 변형거동에 관한 연구)

  • Kim J. Y.;Kim J. H.;Chung W. J.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.11a
    • /
    • pp.33-38
    • /
    • 2004
  • In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF

A Study on the Forming Characteristic of Inner Pyramid Structure Bonded Sheet Metal (피라미드형 내부구조재를 가지는 중공형 접합판재의 성형특성에 관한 연구)

  • Kim, J.Y.;Kil, H.Y.;Cho, G.C.;Kim, J.H.;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.295-299
    • /
    • 2006
  • The inner-structure bonded(ISB) sheet metal is defined as a composite sheet metal which has middle layer of truss-structure between two skin sheets. The characteristics such as ultra-light weight, high rigidity, high strength, etc are required especially for automobile parts. The characteristic of ISB sheet metal depends on inner-structure pattern or method of bonding. Pyramid type of crimped expanded metal is used for inner-structure and both of resistance welding and adhesive bonding are applied to make a specimen. As a result of compression test, it is appeared that forming limit is 10% reduction in thickness under a load of 8kgf per unit element(one inner-structure). In case of uniaxial tensile test the non-uniform surface integrity rather than the buckling of inner-structure happened at a load of 450kgf, which indicates elongation of 7.2% and thickness reduction of 13%. The eye-inspection method was applied to examine the defects occurring on the specimen during stretch forming. In case of biaxial stretch forming only the non-uniform deformation on the surface of a skin sheet could be observed. The forming limit in stretching of ISB sheet metal with the hemi-spherical punch of 150mm in diameter was 3mm in forming depth and 5% reduction in thickness.

  • PDF

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 특성평가)

  • 정창균;윤석준;성대용;양동열;안동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.483-486
    • /
    • 2004
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

  • PDF

Filler effect of inner-structure bonded sheet metal in shearing process (내부구조재를 가진 중공형 접합판재의 전단가공특성에서 틈새효과에 관한 연구)

  • Kim, Ji-yong;Jung, Wan-jin;Kima, Jong-ho
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 2008
  • While recent industrial structure is various, it is small quantity batch production structure, and products requiring of various functions are increasing. In order to improve the quality of the sheared surface in cutting of inner structure bonded sheet metal the cut-off operation is mainly investigated, which is the typical shearing process in sheet metal forming technology. The sandwich sheet metals considered have inner structure which is constructed in the form of crimped expanded metal and woven metal. The inner structure is bonded between solid sheet by resistance welding or adhesive bonding. The shearing process is visualized by the computer vision system installed in front of the cut-off die and the sheared surface is measured and quantitatively compared with the help of the optical microscope after cut-off operation. From test results we found that the influence of sheared position can be observed and explained clearly and this result can be utilized to get the better sheared surface.

  • PDF

Mechanical Behavior of Sandwich Panels with Quasi-Kagome Truss Core Fabricated from Expanded Metals (확장금속망을 이용하여 제작된 준카고메 트러스 중간층을 갖는 샌드위치 판재의 기계적 거동)

  • Lim, Chae-Hong;Lim, Ji-Hyun;Jung, Jae-Gyu;Lim, Jong-Dae;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1078-1085
    • /
    • 2006
  • Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels with quasi-Kagome truss cores. First, metal sheets with a peculiar pattern of slits were expanded to be meshes, they are crimped into a triangular wave pattern, and then one third of struts were bent reversely to be quasi-Kagome trusses. Finally, two face sheets were bonded on the upper and the lower sides. The bending strength was estimated through elementary mechanics for the sandwich specimens with two kinds of face sheet the results of estimation were compared with the those of finite element analyses and experiments.

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

A Study on the Compressive Characteristics of Inner Structure Bonded Sheet in the Thickness Direction (접합판재의 두께 방향 압축 특성에 대한 실험 및 연구해석)

  • Cho, K.C.;Kim, J.Y.;Chung, W.J.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • Sandwich panel with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the pressure in the thickness direction may become a weak point in the forming process. Two pyramid type designs for inner structure are considered. For the resistance characteristics in the thickness direction, finite element simulations are carried out. For one design, experimental results are provided. It is shown that simulation can give a reasonable agreement with experiment. The reasons for the discrepancy are discussed mainly in the geometrical viewpoint. It is observed that most of deformation depends on bending mode. Two designs are compared using simulation.

  • PDF

Basic Study in Fabrication and Mechanical Characteristics of Ultra Light Inner Structured and Bonded(ISB) Panel Containing Perpendicularly Woven Metal (수직방향 직조 금속망을 이용한 초경량 금속 내부구조 접합판재의 제작 및 특성에 관한 기초 연구)

  • Jung Chang Gyun;Yoon Seok-Joon;Yang Dong-Yol;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.152-158
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, due to their dimensional shape of metal between a pair of metal skin sheets or face sheets. Previous works showed that ISB panels containing inner structures formed as repeated pyramidal shapes saved weight up to $60\%$ in condition of same stiffness comparing with solid sheet. In this work, woven metal is adapted to inner structures replacing pyramidal structures. The test specimens of ISB panel containing woven metal made by multi-point electric resistance welding and 3-point bending test have been carried out. The results of experiments and comparisons of process parameters, stiffness and failure mode are discussed.