• 제목/요약/키워드: exosome protein

검색결과 14건 처리시간 0.016초

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

유산균 유래 엑소좀 유사 나노베지클의 피부 장벽 개선 효과 (Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria)

  • 왕혜수;이광수;강용원
    • 대한화장품학회지
    • /
    • 제47권2호
    • /
    • pp.171-178
    • /
    • 2021
  • 본 연구에서는 프로바이오틱스 유래 엑소좀 유사 나노베지클을 분리하고, 피부에 대한 여러 가지 생리활성을 평가했다. 프로바이오틱스의 한 종인 Lactococcus lactis subsp. lactis (LL)를 배양하고 고압균질기와 한외여과를 통해 70 ~ 200 nm 크기를 갖는 LL 유래 엑소좀 유사 나노베지클(LVs)을 분리했다. 나노입자추적분석 결과 1.81 × 1011 particles/mL로 나타났다. LVs를 섬유아세포와 피부각질세포에 처리하여 피부 주름과 장벽 개선과 관련된 효능을 확인했다. 우선 섬유아세포에서 fibrillin (FBN1) 유전자 발현량이 23%, 피부각질세포에서 fibronectin (FN1)과 filaggrin (FGN) 유전자 발현량이 각각 65%, 400% 증가했다. 그리고 각질형성능은 대조군 대비 30% 증가함을 확인할 수 있었다. 또한, UV 조사한 피부각질세포에 LVs를 처리했을 때 collagen type I alpha 1 (COL1A1)이 대조군 대비 약 83% 증가하는 결과를 보여주었다. 이로써 프로바이오틱스 유래 엑소좀 유사 나노베지클은 장벽 개선과 관련하여 화장품 및 의약품 소재로 이용할 수 있음을 확인했다.

Rectal cancer-derived exosomes activate the nuclear factor kappa B pathway and lung fibroblasts by delivering integrin beta-1

  • Qingkun Gao;Ke An;Zhaoya Gao;Yanzhao Wang;Changmin Ding;Pengfei Niu;Fuming Lei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.375-381
    • /
    • 2023
  • Numerous studies have revealed the importance of tumor-derived exosomes in rectal cancer (RC). This study aims to explore the influence of tumor-derived exosomal integrin beta-1 (ITGB1) on lung fibroblasts in RC along with underlying mechanisms. Exosome morphology was observed using a transmission electron microscope. Protein levels of CD63, CD9, ITGB1, p-p65 and p65 were detected using Western blot. To determine ITGB1's mRNA expression, quantitative real-time polymerase chain reaction was used. Moreover, levels of interleukin (IL)-8, IL-1β, and IL-6 in cell culture supernatant were measured via commercial ELISA kits. ITGB1 expression was increased in exosomes from RC cells. The ratio of p-p65/p65 as well as levels of interleukins in lung fibroblasts was raised by exosomes derived from RC cells, while was reduced after down-regulation of exosomal ITGB1. The increased ratio of p-p65/p65 as well as levels of pro-inflammatory cytokines caused by exosomes from RC cells was reversed by the addition of nuclear factor kappa B (NF-κB) inhibitor. We concluded that the knockdown of RC cells-derived exosomal ITGB1 repressed activation of lung fibroblasts and the NF-κB pathway in vitro.

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.