• 제목/요약/키워드: exoskeleton system

검색결과 47건 처리시간 0.026초

하지 착용형 외골격 로봇의 효율적 보행패턴 생성 및 에너지 효율성 검증 (Gait Pattern Generation for Lower Extremity Exoskeleton Robot and Verification of Energy Efficiency)

  • 김완수;이승훈;유재관;백주현;김동환;한정수;한창수
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.346-353
    • /
    • 2012
  • The purpose of this study is to verify the energy efficiency of the integrated system combining human and a lower extremity exoskeleton robot when it is applied to the proposed gait pattern. Energy efficient gait pattern of the lower limb was proposed through leg function distribution during stance phase and the dynamic-manipulability ellipsoid (DME). To verify the feasibility and effect of the redefined gait trajectory, simulations and experiments were conducted under the conditions of walking on level ground and ascending and descending from a staircase. Experiments to calculate the metabolic cost of the human body with or without the assistance of the exoskeleton were conducted. The energy consumption of the lower extremity exoskeleton was assessed, with the aim of improving the efficiency of the integrated system.

The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach

  • Majeed, Anwar P.P. Abdul;Taha, Zahari;Abdullah, Muhammad Amirul;Azmi, Kamil Zakwan Mohd;Zakaria, Muhammad Aizzat
    • Advances in robotics research
    • /
    • 제2권3호
    • /
    • pp.237-245
    • /
    • 2018
  • This study evaluates the efficacy of a class robust control scheme namely active force control in performing a joint based trajectory tracking of an upper limb exoskeleton in rehabilitating the elbow joint. The plant of the exoskeleton system is obtained via system identification method whilst the PD gains were tuned heuristically. The estimated inertial parameter that enables the AFC disturbance rejection effect is attained by means of a non-nature based metaheuristic optimisation technique known as simulated Kalman filter (SKF). It was demonstrated from the present investigation that the proposed PDAFC scheme outperformed the classical PD algorithm in tracking the prescribed trajectory both in the presence and without the presence of disturbance attributed by the mannequin limb weights (1 kg and 1.5 kg) that mimics the weight of actual human limb weight. Therefore, it is apparent from the results obtained from the present study that the proposed control scheme, i.e., PDAFC is suitable for the application of exoskeleton for stroke rehabilitation.

손가락 외골격용 전기활성 고분자 구동체-센서 하이브리드 구조체의 굽힘 동작 제어 (Bending Motion Control of Electroactive Polymer Actuator-Sensor Hybrid Structure for Finger Exoskeleton)

  • 한동균;송대석;조재영;김동민
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.865-871
    • /
    • 2015
  • This study was conducted in order to develop a finger exoskeleton system using ionic polymer metal composites (IPMCs) as the actuator and sensor in a hybrid structure. To use the IPMC as an actuator producing large force, a first order transfer function was obtained using results from a block force for DC excitation that applied to two IPMCs of 20mm-width, 50mm-length, and 2.4mm thickness together. After which the validation of 200gf control with anti-windup PI controller was confirmed. A 5mm-width, 50mm-length, 0.6mm-thickness of IPMC was also modeled as a sensor for tip displacement. As a result, the IPMC sensor could been utilized as a trigger role for the actuator. Finally, an IPMC sensor and actuator were installed on the joint of a single DOF exoskeleton in the hybrid structure, and test for the control of 40gf of block force and predefined sequence of motion was performed.

Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계 (Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System)

  • 이운규;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

IMS를 위한 Human Interface 시스템 개발 - 원격제어 시스템의 활용 - (Development of a Human Interface System for the IMS, - Application of the Teleoperation System -)

  • 차인혁;한창수;이병주
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.156-164
    • /
    • 1998
  • IMS is a more advanced manufacturing system than FMS. However, IMS do not have sufficient performance for the work in the various and uncertain environment, because of the difficulty of the work and occurrence of the unexpected condition. If IMS is hard to work properly, teleoperation system can support it by using the human's consideration and judgment. The master mechanism is a basic component of the teleoperation system and the development of the useful one is important for efficiency of the work. A master mechanism of exoskeleton type can increase the work efficiency, mobility and harmony between a working robot and an operator. This paper describes an arm-harness of exoskeleton type, which is able to drive a robot according to judgment. This device is applied to a robot system for evaluating the system performance through the experiment.

  • PDF

외골격 로봇의 동작인식을 위한 보행의 운동학적 요인을 이용한 보행유형 분류 (Gait Type Classification Based on Kinematic Factors of Gait for Exoskeleton Robot Recognition)

  • 조재훈;봉원우;김동현;최현기
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.129-136
    • /
    • 2017
  • 외골격 로봇은 군사, 산업 및 의료와 같은 다양한 분야에서 사용되도록 개발된 기술이다. 외골격 로봇은 착용자의 움직임을 감지하여 작동한다. 외골격 로봇이 착용자의 일상적인 행동을 인지함으로써 착용자를 신속하게 보조하고 시스템을 효율적으로 활용할 수 있다. 본 연구에서는 피실험자로부터 얻은 운동학적 데이터를 통해 LDA, QDA, kNN을 활용하여 보행유형을 분류한다. 보행은 주로 일상생활에서 수행되는 일반보행과 계단보행을 선정하였다. 피실험자에게 7개의 IMUs 센서를 정해진 위치에 부착하여 운동학적 요소를 측정 하였다. 결과적으로, LDA는 78.42%, QDA는 86.16%, kNN는 k값에 따라 87.10% ~ 94.49%의 정확도로 분류하였다.

Exoskeleton System for Radiation Protection in Interventional Radiology

  • Clarissa Hosse;Johannes Kolck;Elif Can;Uli Fehrenbach;Timo A. Auer;Fabio Pivetta;Federico Collettini;Bernhard Gebauer;Maximilian de Bucourt
    • Journal of Radiation Protection and Research
    • /
    • 제49권2호
    • /
    • pp.78-84
    • /
    • 2024
  • Background: As the quantity and complexity of radiological interventions are constantly increasing, gear that offers optimal protection while maintaining mobility and a low weight burden is becoming more important. A newly developed exoskeleton radiation protection system (ERPS) (StemRad MD; StemRad Ltd.) can carry the weight of the shielding. The aim of our study was to analyze initial experience, especially in terms of advantages and disadvantages, with this new ERPS in interventional radiology. Materials and Methods: Forty-six interventions utilizing the ERPS were analyzed. The interventional radiologists completed a 15-question survey evaluating various aspects of the protective system, including weight, mobility, comfort, and radiation protection adequacy. Results and Discussion: In 98% of procedures, interventionalists reported being very satisfied (89%) or slightly satisfied (9%) and would recommend the system to colleagues. The exoskeleton system was rated as 100% comfortable, not too heavy, and did not restrict mobility in 98% of cases. Conclusion: The ERPS is a recommendable alternative to standard lead aprons, providing flexibility, comfort, and effective weight distribution without restricting mobility.