• Title/Summary/Keyword: exoskeleton system

Search Result 47, Processing Time 0.021 seconds

Technical Trend of the Lower Limb Exoskeleton System for the Performance Enhancement (인체 능력 향상을 위한 하지 외골격 시스템의 기술 동향)

  • Lee, Hee-Don;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.364-371
    • /
    • 2014
  • The purpose of this paper is to review recent developments in lower limb exoskeletons. The exoskeleton system is a human-robot cooperation system that enhances the performance of the wearer in various environments while the human operator is in charge of the position control, contextual perception, and motion signal generation through the robot's artificial intelligence. This system is in the form of a mechanical structure that is combined to the exterior of a human body to improve the muscular power of the wearer. This paper is followed by an overview of the development history of exoskeleton systems and their three main applications in military/industrial field, medical/rehabilitation field and social welfare field. Besides the key technologies in exoskeleton systems, the research is presented from several viewpoints of the exoskeleton mechanism, human-robot interface and human-robot cooperation control.

Changes of muscle fatigue by force compensation using upper limb wearing exoskeleton system (상지부 착용 외골격시스템의 근력보상 정도에 따른 근피로도 변화에 대한 연구)

  • Kang, Hyun-Min;Park, Su-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1600-1602
    • /
    • 2008
  • Various applications of exoskeleton system are reported in the area of military, healthcare, and industries. More the user gets help from exoskeleton system, more power is consumed. To resolve this design conflict, we suggest an energy efficient exoskeleton system which compensates muscle fatigue in isotonic and isometric contraction conditions. Fatigue compensated exoskeleton significantly reduced muscle fatigue while consumed less operation power. In addition, the level of fatigue compensation can be managed by motor control using various input profile. It can make user customized exoskeleton system.

  • PDF

Teleoperated Control of a Mobile Robot Using an Exoskeleton-Type Motion Capturing Device Through Wireless Communication (Exoskeleton 형태의 모션 캡쳐 장치를 이용한 이동로봇의 원격 제어)

  • Jeon, Poong-Woo;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.434-441
    • /
    • 2004
  • In this paper, an exoskeleton-type motion capturing system is designed and implemented. The device is designed to have 12 degree-of-freedom entirely to represent human arm motions. Forward and inverse kinematics of the device are analyzed to make sure of its singular positions. With the designed model parameters, simulation studies are conducted to verify that the designed motion capturing system is effective to represent human motions within the workspace. As a counterpart of the exoskeleton system, a mobile robot is built to follow human motion restrictively. Experimental studies of teleoperation from the exoskeleton device to control the mobile robot are carried out to show feasible application of wireless man-machine interface.

Development of a Modular-type Knee-assistive Wearable System (무릎근력 지원용 모듈식 웨어러블 시스템 개발)

  • Yu, Seung-Nam;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.357-364
    • /
    • 2010
  • This study proposes a lower-limb exoskeleton system that is controlled by a wearer's muscle activity. This system is designed by following procedure. First, analyze the muscle activation patterns of human leg while walking. Second, select the adequate actuator to support the human walking based on calculation of required force of knee joint for step walking. Third, unit type knee and ankle orthotics are integrated with selected actuator. Finally, using this knee-assistive system (KAS) and developed muscle stiffness sensors (MSS), the muscle activity pattern of the subject is analyzed while he is walking on the stair. This study proposes an operating algorithm of KAS based on command signal of MSS which is generated by motion intent of human. A healthy and normal subject walked while wearing the developed powered-knee exoskeleton on his/her knees, and measured effectively assisted plantar flexor strength of the subject's knees and those neighboring muscles. Finally, capabilities and feasibility of the KAS are evaluated by testing the adapted motor pattern and the EMG signal variance while walking with exoskeleton. These results shows that developed exoskeleton which controlled by muscle activity could help human's walking acceptably.

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.

Lower-limb Exoskeleton Testbed for Level Walking with Backpack Load (평지 보행을 위한 하지 근력증강 로봇 테스트베드)

  • Seo, Changhoon;Kim, Hong-chul;Wang, Ji-Hyeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.309-315
    • /
    • 2015
  • This paper presents a lower-limb exoskeleton testbed and its control method. An exoskeleton is a wearable robotic system that can enhance wearer's muscle power or assist human's movements. Among a variety of its applications, especially for military purpose, a wearable robot can be very useful for carrying heavy loads during locomotion by augmenting soldiers' mobility and endurance. The locomotion test on a treadmill was performed up to maximum 4km/h walking speed wearing the lower-limb exoskeleton testbed with a 45kg backpack load.

Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton (하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발)

  • Lim, Dong Hwan;Kim, Wan Soo;Ali, Mian Ashfaq;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.

Development of Hand Exoskeleton using Pneumatic Artificial Muscle Combined with Linkage (링키지와 결합된 공압 인공근육을 이용한 손 외골격 제작)

  • Koo, Inwook;Kang, Brian Byunghyun;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1217-1224
    • /
    • 2013
  • In this paper, a hand exoskeleton actuated by air muscles(soft hand exoskeleton) is introduced. Some soft hand exoskeletons have already been developed to overcome the defects of hand exoskeletons based on linkage and pneumatic piston system-they are usually bulky and do not have enough degree of freedom(DOF). However, soft hand exoskeletons still have defects. Their motions are not precise as linkage based hand exoskeletons, because their actuator, such as air muscle is made of soft materials. So we developed a new linkage which is not bulky and has redundant DOF. It is combined with air muscle in a specific way so that it acts as a guide when air muscle is actuated. Some experiments were conducted to evaluate the validity and usability of our hand exoskeleton.

Optimization of Hip Flexion/Extension Torque of Exoskeleton During Human Gait Using Human Musculoskeletal Simulation (인체 근골격 시뮬레이션을 활용한 인체 보행 시 외골격의 고관절 굴곡/신장 토크 최적화)

  • Hyeseon Kang;Jinhyun Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.117-121
    • /
    • 2023
  • Research on walking assistance exoskeletons that provide optimized torque to individuals has been conducted steadily, and these studies aim to help users feel stable when walking and get help that suits their intentions. Because exoskeleton auxiliary efficiency evaluation is based on metabolic cost savings, experiments on real people are needed to evaluate continuously evolving control algorithms. However, experiments with real people always require risks and high costs. Therefore, in this study, we intend to actively utilize human musculoskeletal simulation. First, to improve the accuracy of musculoskeletal models, we propose a body segment mass distribution algorithm using body composition analysis data that reflects body characteristics. Secondly, the efficiency of most exoskeleton torque control algorithms is evaluated as the reduction rate of Metabolic Cost. In this study, we assume that the torque minimizing the Metabolic Cost is the optimal torque and propose a method for obtaining the torque.