• Title/Summary/Keyword: exon capture

Search Result 4, Processing Time 0.021 seconds

Exon Capture - Principle and Applications to Phylogenomics and Population Genomics of Fishes (엑손 포획 - 원리와 어류의 계통유전체학 및 집단유전체학으로의 응용)

  • Li, Chenhong
    • Korean Journal of Ichthyology
    • /
    • v.33 no.4
    • /
    • pp.205-216
    • /
    • 2021
  • Phylogenetic reconstruction based on one locus or a few loci can be misleading due to gene-tree/species-tree discordance. Species delimitation and intraspecific studies also often suffered from low resolution because of insufficient statistic power when few loci were used. Exon capture method is one of the most efficient way to collect genome-scale data, which can significantly augment studies that aimed to investigate patterns and histories of organisms at both intraspecific and high level. Here, I showed the advancement of shifting from single-gene method to genomic approach and the benefit of applying exon capture method comparing to alternative genomic techniques. Then, I explained the principle of exon capture method as well as providing detailed recommendations for applying this method. Finally, I demonstrated exon capture method using two applications and discussed future perspectives of this technology.

Comparative Study of p53 Mutation and Oncoprotein Expression in Gastric Adenocarcinoma (미세절편으로 얻은 위암 조직세포에서 p53 유전자의 돌연변이와 종양단백 발현에 관한 연구)

  • Kim Chul;Joo Jai Kyun;Choi Chan;Kim Young Jin
    • Journal of Gastric Cancer
    • /
    • v.3 no.3
    • /
    • pp.145-150
    • /
    • 2003
  • Purpose: The p53 tumor suppressor gene is believed to play a pivotal role in preventing the uncontrolled cellular growth characteristic of cancer. Mutation of the p53 gene represent one of the most common genetic alterations in human cancers, and the acquisition of such defects is strongly associated with tumor progression and metastasis. The aim of this study was to evaluate the relation between p53 immunoreactivity and the mutation of p53 gene in gastric adenocarcinoma obtained by laser capture microscope. Materials and Methods: Formalin fixed paraffin embedded tissue specimens were obtained from 20 patients who underwent surgery for gastric cancer. According to UICC TNM system, 3 of the cases were Ia, 2 cases II, 4 cases IIIa, 5 cases IIIb, and 6 cases IV. Results: Immunohistochemical staining revealed eight cases as negative (less than $10\%$), twelve cases as postive (more than $10\%$). The locations of mutations were as follows; 7 cases had point mutation at exon 4, and 3 cases point mutation at exon 8. There was no mutation at exon 5, 6, 7 and 9. The mutation was observed in 1 case out of 8 p53 oncoprotein negative cases, and 7 cases out of 12 p53 positive cases. The mutation was more common in p53 positive cases (P<0.05), However, there was no significant correlation between p53 mutation observed by DNA sequencing after laser capture microdissection and expression of p53 oncoprotein. Conclusion: These result suggest that he expression of p53 oncoprotein not to be related to the mutation of p53 gene at exons 4 through 9 in gastric cancer.

  • PDF

Identification of Causal and/or Rare Genetic Variants for Complex Traits by Targeted Resequencing in Population-based Cohorts

  • Kim, Yun-Kyoung;Hong, Chang-Bum;Cho, Yoon-Shin
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • Genome-wide association studies (GWASs) have greatly contributed to the identification of common variants responsible for numerous complex traits. There are, however, unavoidable limitations in detecting causal and/or rare variants for traits in this approach, which depends on an LD-based tagging SNP microarray chip. In an effort to detect potential casual and/or rare variants for complex traits, such as type 2 diabetes (T2D) and triglycerides (TGs), we conducted a targeted resequencing of loci identified by the Korea Association REsource (KARE) GWAS. The target regions for resequencing comprised whole exons, exon-intron boundaries, and regulatory regions of genes that appeared within 1 Mb of the GWA signal boundary. From 124 individuals selected in population-based cohorts, a total of 0.7 Mb target regions were captured by the NimbleGen sequence capture 385K array. Subsequent sequencing, carried out by the Roche 454 Genome Sequencer FLX, generated about 110,000 sequence reads per individual. Mapping of sequence reads to the human reference genome was performed using the SSAHA2 program. An average of 62.2% of total reads was mapped to targets with an average 22X-fold coverage. A total of 5,983 SNPs (average 846 SNPs per individual) were called and annotated by GATK software, with 96.5% accuracy that was estimated by comparison with Affymetrix 5.0 genotyped data in identical individuals. About 51% of total SNPs were singletons that can be considered possible rare variants in the population. Among SNPs that appeared in exons, which occupies about 20% of total SNPs, 304 nonsynonymous singletons were tested with Polyphen to predict the protein damage caused by mutation. In total, we were able to detect 9 and 6 potentially functional rare SNPs for T2D and triglycerides, respectively, evoking a further step of replication genotyping in independent populations to prove their bona fide relevance to traits.