• Title/Summary/Keyword: exit-roller

Search Result 5, Processing Time 0.039 seconds

Study of 4-Axis Machining for Ball Gear Cam (볼기어캠의 4-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Shin, Yong-Bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.81-87
    • /
    • 2019
  • The automatic tool changer of a machining center consists of a tool magazine and a cam box, and the core components of the cam box are a roller gear cam and a turret. Recently, the roller gear cam of a cam box has been replaced by a ball gear cam. In this study, the design and machining method of ball gear cam for an automatic tool changer was studied. Additionally, an algorithm for a 4-axis post processing method was established from an instrumental formula by designing a ball gear cam, thus preventing machining at the bottom of ball end mill and enabling the ball on the turret to be driven at the entrance and exit of a curve without collision due to machining errors. In conclusion, machining using only the 4-axis method including the C-axis on a BC -Type 5-axis machine produced the desired ball gear cam.

A Study on Strip Fabrication Processes Using Mushy State Rolling(I) (반용융 압연을 이용한 박판제조공정에 관한 연구( I ))

  • 백남주;강충길;김영도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.584-595
    • /
    • 1991
  • In the direct rolling processes for the mushy state alloy, a mushy state material which simultaneously contains liquid-solid phase is obtained from the exit port of stirring apparatus with a given solid fraction. This solid fraction is dependent on the temperature of within the solid-liquid range which shows to be controlled accurately by the experimental conditions for a given stirring apparatus. Rolling conditions for fabrication the fine surface strip were obtained from direct rolling experiment with mushy state alloys of Sn-75%Pb and aluminum alloy. Influence of solid fraction, rolling speed and initial roller gap on the state of strip surface and solidified structure was observed. We proposed theoretical model for prediction of rolling force, and we compared calculation result and experimental value measured with load cell.

Process Design for Multi Roll-Die Drawing of GDI Fuel Rail (GDI Fuel Rail 제조를 위한 멀티 롤 다이 인발 공정 설계)

  • Kim, S.H.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.390-395
    • /
    • 2016
  • GDI fuel rail is component of GDI system which directly fuel with high pressure in the engine combustion chamber. And it is required to high strength and dimensional accuracy. Multi roll-die drawing process consists of the idle roll-die and drawing die in tandem. In the course of drawing with roll-die, deformation takes place between the idle roller pair or pairs. The friction force decreases with the idle roll-die, enabling the reductions to be risen in one step. In this study, the caliber of 4-roll was designed into pass schedule that made the draw force at the exit of the drawing die be equal. In order to compensate for over-filling area, the roll caliber was modified using the result of FE-analysis. The results of FE-analysis and experiment show that the proposed design method can be used to effectively design the multi roll-die process, leading to an accurate shape and correct dimensions of the final within an allowable tolerance of ${\pm}0.08mm$. Furthermore, the productivity was evaluated by comparing with multi roll-die drawing process and conventional multi shape drawing process. The result was confirmed that it has an efficiency of about 2 times than conventional process in terms of time.