• Title/Summary/Keyword: existing reinforced concrete beam-column joint

Search Result 27, Processing Time 0.022 seconds

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP (고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (steel plate, carbon fiber sheet, and embedded carbon fiber rod) in existing reinforced concrete buildings. Six specimens of retrofitted beam-column joints are constructed using various retrofitting materials and tested for their retrofit performances. Specimens designed by retrofitting the beam-column joint regions (LBCJ series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of crack control at the time of initial loading and confinement from retrofitting materials during testing. Specimens of LBCJ series, designed by the retrofitting of FRP in reinforecd beam-column joint regions increased its maximum load carrying capacity by 26~50% and its energy dissipation capacity by 13.0~14.4% when compared to standard specimen of LBCJC with a displacement ductility of 4.

Performance of hybrid beam-column joint cast with high strength concrete

  • Al-Osta, M.A.;Al-Khatib, A.M.;Baluch, M.H.;Azad, A.K.;Rahman, M.K.
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.603-617
    • /
    • 2017
  • This paper presents investigation into the behavior of beam-column joints, with the joint region concrete being replaced by steel fiber reinforced concrete (SFRC) and by ultra-high performance concrete (UHPC). A total of ten beam-column joint specimens (BCJ) were tested experimentally to failure under monotonic and cyclic loading, with the beam section being subjected to flexural loading and the column to combined flexural and axial loading. The joint region essentially transferred shear and axial stresses as received from the column. Steel fiber reinforced concrete (SFRC) and ultra-high performance concrete (UHPC) were used as an innovative construction and/or strengthening scheme for some of the BCJ specimens. The reinforced concrete specimens were reinforced with longitudinal steel rebar, 18 mm, and some specimens were reinforced with an additional two ties in the joint region. The results showed that using SFRC and UHPC as a replacement concrete for the BCJ improved the joint shear strength and the load carrying capacity of the hybrid specimens. The mode of failure was also converted from a non-desirable joint shear failure to a preferred beam flexural failure. The effect of the ties in the SFRC and UHPC joint regions could not be observed due to the beam flexural failure. Several models were used in estimating the joint shear strength for different BCJ specimens. The results showed that the existing models yielded wide-ranging values. A new concept to take into account the influence of column axial load on the shear strength of beam-column joints is also presented, which demonstrates that the recommended values for concrete tensile strength for determination of joint shear strength need to be amended for joints subject to moderate to high axial loads. Furthermore, finite element model (FEM) simulation to predict the behaviour of the hybrid BCJ specimens was also carried out in an ABAQUS environment. The result of the FEM modelling showed good agreement with experimental results.

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

Seismic Performance Evaluation of Existing Low-rise RC Frames with Non-seismic Detail (비내진상세를 가지는 기존 저층 철근콘크리트 골조의 내진거동평가)

  • Kim, Kyung Min;Lee, Sang Ho;Oh, Sang Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.97-105
    • /
    • 2013
  • In this paper, the a static experiment of on two reinforced concrete (RC) frame sub-assemblages was conducted to evaluate the seismic behaviors of existing RC frames that were not designed to support a seismic load. The specimens were a one span and actual-sized. One of them had two columns with the same stiffness, but the other had two columns with different stiffness values. As Regarding the test results, lots of many cracks occurred on the surfaces of the columns and beam-column joints for the two specimens, but the cover concrete splitting hardly occurred was minimal until the test ends. In the case of the specimen with the same stiffness offor the two columns, the flexural collapse of the left-side column occurred. However, in the case of the specimen with different stiffness values for of the two columns, the beam-column joint finally collapsed, even though the shear strength of the joint was designed to be strong enough to support the lateral collapse load. The nonlinear Nonlinear static analysis of the two specimens was also conducted using the uniaxial spring model, and the analytical results successfully simulated the nonlinear behaviour of the specimens in accordance with the test results.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam(2) -The Behaviors Properties of Joint with Key Parameter, such as Strength of Concrete, size of Panel Zone and Axial Force ratio- (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구(2) -콘크리트 강도, 판넬죤의 크기, 축력비를 변수로 한 접합부의 거동 특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.107-120
    • /
    • 1997
  • The purpose of this study is to develop composite structural system which is to have versatility in plan design and to improve economical efficieney, to maximise structural capacity than existing structural system. In this viewpoint, it was investigated to the properties of structural behaviors for i oint consisting of concrete filled steel square tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. In the previous report, researched to the properties of joints with key parameters. such as Axial Force ratio and section types. From the based on previous results, this study investigated the properties of this joints with key parameters, such as strength of concrete, size of panel zone and Axial Force ratio. The obtained results are summarised as follows. (1) Investigating for the failure mode of the beam-to-column joint, the specimens of S,LL and LH series(except for L5H) presented flexural failure mode. (2) The initial stiffness of joint was increasd as the decrease of axial force ratio and increase of the concrete strength. (3) The rotation resisting capacity was effective as the increment of the concrete strength and decrement of the axial force ratio. (4) The emprical formula to predict the ultimate capacity of joint model to introduce decrease coefficient according to the axial force ratio to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints Retrofitting with Fiber Reinforced Polymer Sheets and Embedded CFRP Rods (섬유시트와 매입형 CFRP Rod를 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (CFRP sheet, AFRP sheet, embedded CFRP rod) in existing reinforced concrete structure. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens LBCJ-CRUS, designed by the retrofitting of CFRP Rod and CFRP Sheet in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.54 times and its energy dissipation capacity by 2.36 times in comparison with standard specimen LBCJ for a displacement ductility of 4 and 7. And Specimens LBCJ-CS, LBCJ-AF series were increased its energy dissipation capacity each by 2.04~2.34, 1.63~3.02 times in comparison with standard specimen LBCJ for a displacement ductility of 7.