• Title/Summary/Keyword: existence of global solutions

Search Result 98, Processing Time 0.02 seconds

GLOBAL ATTRACTOR FOR A CLASS OF QUASILINEAR DEGENERATE PARABOLIC EQUATIONS WITH NONLINEARITY OF ARBITRARY ORDER

  • Tran, Thi Quynh Chi;Le, Thi Thuy;Nguyen, Xuan Tu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.447-463
    • /
    • 2021
  • In this paper we study the existence and long-time behavior of weak solutions to a class of quasilinear degenerate parabolic equations involving weighted p-Laplacian operators with a new class of nonlinearities. First, we prove the existence and uniqueness of weak solutions by combining the compactness and monotone methods and the weak convergence techniques in Orlicz spaces. Then, we prove the existence of global attractors by using the asymptotic a priori estimates method.

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

POSITIVE SOLUTIONS FOR THE SECOND ORDER DIFFERENTIAL SYSTEM WITH STRONGLY COUPLED INTEGRAL BOUNDARY CONDITION

  • You-Young Cho;Jinhee Jin;Eun Kyoung Lee
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.37-50
    • /
    • 2024
  • We establish the existence, multiplicity and uniqueness of positive solutions to nonlocal boundary value systems with strongly coupled integral boundary condition by using the global continuation theorem and Banach's contraction principle.

GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL TYPE

  • Zhao, Lili;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.577-594
    • /
    • 2013
  • In this paper, we study the global stability and the existence of almost periodic solution of high-order Hopfield neural networks with distributed delays of neutral type. Some sufficient conditions are obtained for the existence, uniqueness and global exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. An example is given to show the effectiveness of the proposed method and results.

PARAMETRIZED PERTURBATION RESULTS ON GLOBAL POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND HARDY TEREMS

  • Kim, Wan Se
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.549-570
    • /
    • 2018
  • We establish existence and bifurcation of global positive solutions for parametrized nonhomogeneous elliptic equations involving critical Sobolev-Hardy exponents and Hardy terms. The main approach to the problem is the variational method.

LOCAL EXISTENCE AND EXPONENTIAL DECAY OF SOLUTIONS FOR A NONLINEAR PSEUDOPARABOLIC EQUATION WITH VISCOELASTIC TERM

  • Nhan, Nguyen Huu;Nhan, Truong Thi;Ngoc, Le Thi Phuong;Long, Nguyen Thanh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.35-64
    • /
    • 2021
  • In this paper, we investigate an initial boundary value problem for a nonlinear pseudoparabolic equation. At first, by applying the Faedo-Galerkin, we prove local existence and uniqueness results. Next, by constructing Lyapunov functional, we establish a sufficient condition to obtain the global existence and exponential decay of weak solutions.

GLOBAL EXISTENCE AND STABILITY FOR EULER-BERNOULLI BEAM EQUATION WITH MEMORY CONDITION AT THE BOUNDARY

  • Park, Jong-Yeoul;Kim, Joung-Ae
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1137-1152
    • /
    • 2005
  • In this article we prove the existence of the solution to the mixed problem for Euler-Bernoulli beam equation with memory condition at the boundary and we study the asymptotic behavior of the corresponding solutions. We proved that the energy decay with the same rate of decay of the relaxation function, that is, the energy decays exponentially when the relaxation function decay exponentially and polynomially when the relaxation function decay polynomially.

BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

  • Zhou, Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.249-281
    • /
    • 2020
  • A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.

GLOBAL EXISTENCE FOR 3D NAVIER-STOKES EQUATIONS IN A LONG PERIODIC DOMAIN

  • Kim, Nam-Kwon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.315-324
    • /
    • 2012
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a long periodic domain. We show by a simple argument that a strong solution exists globally in time when the initial velocity in $H^1$ and the forcing function in $L^p$([0; T);$L^2$), T > 0, $2{\leq}p{\leq}+\infty$ satisfy a certain condition. This condition common appears for the global existence in thin non-periodic domains. Larger and larger initial data and forcing functions satisfy this condition as the thickness of the domain $\epsilon$ tends to zero.

GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SIXTH-ORDER WAVE EQUATION

  • Wang, Ying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1161-1178
    • /
    • 2018
  • In this paper, we consider the Cauchy problem for a class of nonlinear sixth-order wave equation. The global existence and the finite time blow-up for the problem are proved by the potential well method at both low and critical initial energy levels. Furthermore, we present some sufficient conditions on initial data such that the weak solution exists globally at supercritical initial energy level by introducing a new stable set.