• Title/Summary/Keyword: exhaust system

Search Result 1,697, Processing Time 0.033 seconds

흡배기계의 가스유동이 체적효율에 미치는 영향 (The effects of gas flow in intake and exhaust system on volumetric efficiency)

  • 조진호;김병수
    • 오토저널
    • /
    • 제10권4호
    • /
    • pp.57-65
    • /
    • 1988
  • The study of unsteady gas exchange processes in the intake and exhaust systems of four-cylinder, four-stroke cycle internal combustion engine is described in this paper. The calculation model for the intake and exhaust systems is established and solved by the characteristic method for the equations defining these systems. A constant pressure theory is used for modeling branches of intake and exhaust manifolds. The relationship between the volumetric efficiency and the intake, exhaust pressure variation is clarified by simulation of these systems. It is found that the volumetric efficiency mainly depends on the intake pressure during the short period before the intake valves is closed, that the volumetric efficiency is influenced a little by intake chamber volume in the intake and exhaust system.

  • PDF

선박용 소각로 이젝터의 배출온도 변화에 따른 유동과 배기특성 (The Stream and Exhaust Gas Characteristics for Variation of Exhaust Gas Temperature of Marine Incinerator Ejector)

  • 김태한
    • 한국해양공학회지
    • /
    • 제14권2호
    • /
    • pp.60-64
    • /
    • 2000
  • An experimental study was performed to investigate the optimal ejector and operating condition of vessel incinerator. Exhaust gas temperature and secondary air which makes vacuum pressure at ejector throat regions were considered as an important factor. According to the measurement of pressure temperature and nitrogen oxides between non combustion and combustion we found the stream and exhaust gas characteristics of incinerator. This results can give us the exhaust gas temperature control system air pollutant reduction method and the optimum ejector design.

  • PDF

소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구 (A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel)

  • 임재근;조상곤;황상진
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

강제배기를 수반한 자동차 실내의 환기시스템에 대한 유동 및 열전달 해석 (Flow and Heat Transfer Analysis for the Ventilating System in Automobile Interior with a Forced Exhaust)

  • 이상호;모정하
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.469-476
    • /
    • 2005
  • Numerical modeling has been carried out to investigate the two-dimensional air flow in automobile interior with a forced exhaust close to main air inlet for typical ventilation modes. The characteristics such as streamlines and temperature fields in the passenger compartment room with the forced exhaust are analyzed with comparison of the cases without a forced exhaust. The simulation results show that air flow on the floor near the front seat is increased with the forced exhaust for all ventilation modes. Flow recirculation in the cabin is most active in mode 2 with a vertical suction inlet in comparison with other two modes. In particular, less time is taken for air temperature to reach the inlet temperature due to the forced exhaust for the ventilation modes. Finally, it could be predicted that ventilating air flow is much improved with the forced exhaust in the interior Modeling results in this study can be applied to the optimal design of automobile interior fur air ventilation system.

자동차 엔진의 운동변위 결정을 위한 선형행렬연산법 (A Method Using Linear Matrix Algebra for Determination of Engine Motion in Automobile)

  • 고병갑;이완익;박경진;하성규
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.116-127
    • /
    • 1994
  • A method using the linear matrix algebra is developed in order to determine unknown external forces in linear structural analyses. The method defines a matrix which represents the linearity of the vibrational analysis for a structural system. The unknown external forces are determined by the operations of the matrix. The method is applied to find an engine motion in an automobile system. For a simulation process, an exhaust system is modeled and analyzed by the finite element method. The validity of the simulation is verified by comparing with the experimental results the free vibration. Also, an experiment on the forced vibration is performed to determine the damping ratio of the exhaust sysetm. Estimated model parameters(natural frequency, mode shape) are in accord with the experimental results. Because the method merely repeats the transpose and inverse operations of a matrix, the solution is extremely easy and simple. Moreover, it is more accurate than the existing methods in that there is no artificial assumptions in the calculation processes. Therefore, the method is found to be reliable for the analysis of the exhaust system considering the characteristics of vibrations. Although the suggested method is tested by only the exhaust system here, it can be applied to general structures.

  • PDF

마이크로 가스터빈 열병합장치 성능특성 연구 (Study on the Performance Characteristics of Micro Gas Turbine (MGT) Co-generation System)

  • 허광범;김재훈
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.964-970
    • /
    • 2006
  • Micro gas turbine(MGT) has received attention recently as small-scale distributed power sources. With characteristics such as their small size, lightweight, low maintenance cost and minimal vibrations during operation, they are expected to become widespread in a wide range of ' applications, including residential and small-scale industrial use. It is very easier to start-up and stop the MGT system which is the friendly environmental power system has just below the 9ppm NOx emmission and good quality of noise level. The exhaust heat emitted by the MGT is in the form of about $300^{\circ}C$ clean exhaust gas. The exhaust gas is suitable for absorption chiller/heater system. 1 has researched performance characteristics of the 60 kW class MGT-absorption chiller-heater system in the local condition. Variations of heat recovery from exhaust gas has measured according to micro gas turbine output of 15, 30, 45, 60kW. From those results, the performance of the MGT-absorption chiller/heater system has been evaluated.

벽체매립형 폐열회수 환기시스템의 열회수 성능 향상에 관한 실험적 연구 (An Experimental Study on Performance Improvement for Exhaust Heat Recovery Ventilation System in a Lightweight Wall)

  • 정민호;오병길
    • 설비공학논문집
    • /
    • 제26권2호
    • /
    • pp.61-66
    • /
    • 2014
  • Exhaust heat recovery ventilation systems conserve energy through enthalpy recovery between air intake and exhaust, and they are being increasingly used. An exhaust heat recovery ventilation system can be installed in the ceiling of a balcony or emergency evacuation space. However, in the case of fire, the emergency evacuation space has to by law remain as empty space, and therefore, a ventilation system can't be installed in an emergency evacuation space. Therefore, the need for a proper installation space for a ventilation system is emphasized. In this study, to install a heat recovery ventilation system in a lightweight wall, a heat exchanger was assembled of thickness below 140 mm. The efficiency of heat recovery was analyzed through performance experiment, in the case of the cooling and heating mode. The heat recovery efficiency increases when the surface area is increased, by using closer channel spacing in the heat exchanger, or by increasing the size of the heat exchanger.

횡류식 선택대배기환기에서의 배연특성에 관한 연구 (A study on the effective fire and smoke control in transverse oversized exhaust ventilation)

  • 한상필;전용한
    • 한국터널지하공간학회 논문집
    • /
    • 제13권6호
    • /
    • pp.451-462
    • /
    • 2011
  • 도로터널의 환기 시스템은 차량 화재시 안전한 대피환경을 조성하는데 중요한 역할을 하며 종류환기방식과 횡류환기방식으로 대별된다. 본 연구에서는 횡류환기방식에서 대배기구방식에 대한 터널내 풍속, 배연풍량, 개방되는 배기구의 위치에 따른 유동가시화에 대하여 선행 연구와 FDS 시뮬레이션에 의한 결과를 비교하여 연기의 이동특성을 고찰하였다. 그 결과, 연기발생량(Vc=0)에 따른 배연풍량을 제어하여 연기를 피난허용범위 250 m 이내로 제한할 수 있었으며, 터널풍속이 1.75 m/s 와 2.5 m/s일 때 배연풍량은 각각 $173m^3/s$, $236m^3/s$ 을 초과하여야만 연기이동 거리를 250 m로 제한할 수 있었으며 화재지점 가까이에 있는 2개의 배기구를 동시에 개방하는 경우가 배연의 효과가 현저하게 높게 나타났다.

벌크 트레일러의 순간 및 누적 분말 배출량 추정을 위한 신경망 모델 성능 비교 (Performance Comparison of Neural Network Models for the Estimation of Instantaneous and Accumulated Powder Exhausts of a Bulk Trailer)

  • 이창준;이정근
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.174-179
    • /
    • 2023
  • Bulk trailers, used for the transportation of powdered materials, such as cement and fly ash, are crucial in the construction industry. The speedy exhaustion of powdered materials stored in the tank of bulk trailers is relevant to improving transportation efficiency and reducing transportation costs. The exhaust time can be reduced by developing an automatic control system to replace the manual exhaust operation. The instantaneous or accumulated exhausts of powdered materials must be measured for automatic control of the bulk trailer exhaust system. Accordingly, we previously proposed a recurrent neural network (RNN) model that estimated the instantaneous exhaust based on low-cost pressure sensor signals without an expensive flowmeter for powders. Although our previous study utilized only an RNN model, models such as multilayer perceptron (MLP) and convolutional neural network (CNN) are also widely utilized for time-series estimation. This study compares the performance of three neural network models (MLP, CNN, and RNN) in estimating instantaneous and accumulated exhausts. In terms of the instantaneous exhaust estimation, the difference in the performance of neural network models was insignificant (that is, 8.64, 8.62, and 8.56% for the MLP, CNN, and RNN, respectively, in terms of the normalized root mean squared error). However, in the case of the accumulated exhaust, the performance was excellent in the order of CNN (1.67%), MLP (2.03%), and RNN (2.20%).

선로부 TES를 갖는 지하철 역사내 화재의 수치 해석 (A NUMERICAL STUDY ON THE FIRE EMERGENCY IN THE UNDERGROUND STATION WITH TRACKWAY EXHAUST SYSTEM (TES))

  • 박종택;원찬식;허남건
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.26-31
    • /
    • 2006
  • In the present study, a numerical simulation of the subway carriage fire is performed to determine the more effective operation of Trackway Exhaust System(TES) in underground stations. The four types of possible TES operation (OSUS, OSUE, OEUS and OEUE) is simulated and compared their removal capability of smoke and hot temperature for the carriage fire of 2MW. From the results, the distribution of temperature and smoke concentration is more dependent on the operation of fans located at upper side of the platform than those at lower side. It is also found from the results that for more efficient smoke control, the fans at upper side of the platform should be operated as an exhaust system. Whereas the fans at lower side can be operated as a supply system to aid upper exhaust fans.