• Title/Summary/Keyword: exhaust gas

Search Result 2,002, Processing Time 0.029 seconds

Effect of Thermophilic Ammonium Tolerant Bacteria on Malodors Emission of Composting of Pig Manure (돈분 퇴비화 과정중 악취물질에 대한 고온성 암모니움 내성균 접종 효과)

  • Seo, Myung-Chul;Kuroda, Kazutaka;Hanajima, Dai;Haga, Kiyonori
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • In order to investigate microbiological control of malodors, particularly including ammonia, the effect of three thermophilic ammonium tolerant bacteria strains. TAT112. TAT117 and TAT119, were tested during composting of pig manure in the laboratory scale composters. The total weight, volatile solids and BOD of the pig manure compost were decreased during composting process in all treatments. The temperature in all treatments rose in first 3 days dramatically, but that in control without inoculation reached its maximum most lately among the treatments. The nitrogen content of drain water accumulated inside and outside composter, and trapped in 6N $H_2SO_4$ was lower in TAT112 inoculated composter than in control. However, it was not lower in the treatment of TAT117 and TAT119 inoculated. Ammonia concentration in the exhaust gas monitored everyday during composting also demonstrated that it was lowest at TAT112 inoculated among all treatments. It was appeared to have an effect on reducing ammonia emission at the treatment of TAT112 inoculated than the control.

  • PDF

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (선박의 연료품질 기반 군용선박의 연료품질 적용가능성 분석)

  • Hwang, Gwang-Tak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.281-286
    • /
    • 2021
  • The International Maritime Organization recently proposed a policy to establish a preemptive response strategy for exhaust gas pollution on board ships according to the recent strengthening of the sulfur content regulations. Discussions on improving the fuel oil quality and reducing emissions are also ongoing. Fuel oil quality information, which is one of the main concerns internationally, is increasing as the sulfur content standard is being applied from the current 3.5% to 0.5% by 2020. From the perspective of shipping companies and recipients, the essential quality of fuel oil is also requested for domestic and international fuel oil information, basic properties, correlation information between characteristics for application of solid ships and ships. The current standard for the basic quality of fuel oil is generally used, but the nature and composition of the fuel oil are very complex, and the interpretation of the basic quality is complicated because there are many cases outside the scope of the basic standard. Various factors were analyzed for the basic quality of fuel oil in terms of the basic quality of fuel oil, optimization of operation in ships, and fuel efficiency in ships. Moreover, the possibility of applying the standard according to the dilution was suggested.

The Development of N2O Emission Factor at Municipal Solid Waste Incinerator (도시고형폐기물 소각시설의 N2O 배출계수 개발)

  • Ko, Jae Churl;Choi, Sang Hyun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • In this study, nitrous oxide ($N_2O$) emission concentration was measured 3 times continuously for 24 hours from August 27, 2018 to October 22, 2018 and non-dispersive infrared (NDIR) spectrometer was used to calculate $N_2O$ concentration of exhaust gas from municipal solid waste (MSW) incinerator. As a result of $N_2O$ emission characteristics, it is estimated that $N_2O$ emission concentration is due to the difference of furnace temperature, oxygen concentration rather than the chemical component of waste. The measured $N_2O$ emission concentration of MSW incinerator was obtained in the range of 53.6 ~ 59.5 ppm and the total average concentration was measured 55.6 ppm. Therefore, the amount of $N_2O$ emissions calculated from the $N_2O$ concentration was $98.05kg\;day^{-1}$ on average and the amount of $N_2O$ distribution in the range of $90.41{\sim}108.44kg\;day^{-1}$ was obtained. As a result, the $N_2O$ emission factor of the MSW incinerator was estimated to be $1,066.13g_{N_2O}\;ton_{waste^{-1}}$. The estimated $N_2O$ emission factor of the MSW incinerator was 20 times higher than calculated emission factor used in the Tier 2 method. Consequently, it is considered that the method of calculating the amount of $N_2O$ emission in the MSW incineration facilities using waste type and incineration amount needs to be supplemented to ensure accuracy.

Combustion Characteristics of Bio Emulsion Fuel (바이오에멀젼 연료의 연소 특성)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1421-1432
    • /
    • 2018
  • Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.

A Study on the Fine Dust Removal Equipment of Pressurized Water type for the Removal of Exhaust Gas Fine Dust and Volatile Organic Compounds from the Non-industrial combustion plant (비산업 연소 사업장 배출 가스상 미세먼지와 휘발성 유기 화합물 제거를 위한 가압수식 미세먼지 제거 장치 연구)

  • Youn, Jae-Seo;Kim, Sang-Min;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.506-512
    • /
    • 2018
  • The fine dust generated in the home and restaurant business occupies a low ratio of about 4% of the total fine dust emissions. However, at the foodservice business, the rate of change of the pollutant concentration is very high, so that the temporary fine dust concentration can be measured up to 60 times. The pollutants generated from non-industrial combustion plants consist of particulate fine dust and gaseous organic compounds. To remove these pollutants, cleaning dust collection system, which is an effective system for simultaneous removal of gaseous and particulate matter, is applied. This is a method of increasing the probability of diffusion capture of the Brownian motion by pressurized liquid injection method using the atomizing nozzle. The dust removal efficiency of the fine dust collecting system was analyzed by nozzle spraying air pressure condition and angle using the manufactured fine dust removing system. As a result, it was confirmed that the efficiency of removal of fine dust and gaseous organic compounds was more than 90%. The developed system is expected to be highly usable in the future because it can remove particulate dust from the existing plant hood system without any installation cost.

A Methodology to Evaluate Economic Feasibility by Taking into Account Social Costs from Automobile Exhaust Gases (자동차 배기가스로 인한 사회적 비용을 고려한 경제성 평가 방법론)

  • Cho, A-Ra;Lim, Seong-Rin
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.263-272
    • /
    • 2019
  • Air pollutants have a high impact on everyday life as well as on human health; therefore, new technologies such as low-emission vehicles and add-on systems for air pollutant reduction are needed for our society. However, the environmental benefits and costs of those technologies are not taken into account in existing economic feasibility assessments, which is a barrier that needs to be overcome for green technology to achieve wide dissemination and fast penetration in the market. Thus, this study develops a methodology to assess the economic feasibility of an air pollutant reduction technology by taking into account the social costs from air pollutants and carries out a case study to validate the methodology. Because the social unit costs for air pollutants have not been evaluated yet in South Korea, the methodology uses the social unit costs evaluated for the European Union that are then converted to those for South Korea based on the measuring criteria for vehicle emission gases, parity purchasing price, foreign currency exchange rate, and customer price index. The social unit costs for South Korea are used to assess economic feasibility. A case study was performed to assess the economic feasibility of a dual fuel system using diesel and compressed natural gas by taking into account social costs from air pollutants as well as economic costs. This study could contribute to assessing the true economic feasibility of green technology, projects, and policy related with air pollutant reduction.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.