• Title/Summary/Keyword: exhaust gas

Search Result 2,002, Processing Time 0.042 seconds

Improved Drying Process for Electrodes in Production of Lithium-Ion Batteries for Electric Vehicles (전기자동차용 리튬이온 전지의 제조공정을 위해 개선된 극판 건조 기술)

  • Jang, Chan-Hee;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2018
  • An electric vehicle is an environmentally friendly vehicle because there is no exhaust gas, unlike gasoline automobiles. On the other hand, because the electric vehicle is driven by electric power charged in batteries, the distance to go through a single charge depends on the energy density of the batteries. Therefore, a lithium-ion battery with a high energy density is a good candidate for batteries in electric vehicles. Because the electrode is an essential component that governs the efficiency of a lithium-ion battery, the electrode manufacturing process plays a vital role in the entire production process of lithium-ion batteries. In particular, the drying process during the electrode manufacturing process is a critical process that has a significant influence on the performance. This paper proposes an innovative process for improving the efficiency and productivity of the drying process in electrode manufacturing and describe the equipment design method and development results. In particular, the design procedure and development method for enhancing the electrode adhesion power, atmospheric pressure superheated steam drying technology, and drying furnace slimming technologies are presented. As a result, high-speed drying technology was developed for battery electrodes through the world's first turbo dryer technology for mass production using open/integrated atmospheric pressure superheated steam. Compared to the conventional drying process, the drying furnace improved the productivity (Dry Lead Time $0.7min{\rightarrow}0.5min$).

A Study on the Characteristics of Lift and Drag Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력과 항력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.712-718
    • /
    • 2016
  • A heat exchanger tube array in a heat recovery steam generator is exposed to hot exhaust gas flow that can cause flow induced vibrations, which could damage the heat exchanger tube array. The characteristics of flow induced vibration in the tube array need to be established for the structural safe operation of a heat exchanger. Several studies of the flow induced vibrations of typical heat exchangers have been conducted and the nondimensional PSD (Power Spectral Density) function with the Strouhal number, fD/U, had been derived using an experimental method. The present study examined the results of the previous experimental research on the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array was determined from the present CFD analysis. The present CFD analysis introduced circular cylinder tube array and calculated using unsteady laminar flow for the tube array. The characteristics of lift and drag fluctuations over the cylinder tube array was investigated. The derived nondimensional lift and drag PSD was compared with the results of the previous experimental research and the characteristics of lift and drag PSD for a circular cylinder tube array was established from the present CFD study.

A Study on the Characteristics of Lift Fluctuation Power Spectral Density in a Heat Exchanger Tube Array (전열관군에서 양력 변동의 PSD 특성 연구)

  • Ha, Ji-Soo;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6641-6646
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed to establish the characteristics of flow induced vibration in the tube array for the structural safe operation of the heat exchanger. Several researches for the flow induced vibration of typical heat exchangers had been conducted and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. The present study examined the results of the previous experimental researches for the nondimensional PSD characteristics by CFD analysis and the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared from the present CFD analysis. For the previous mentioned purpose, the present CFD analysis introduced circular cylinder tube array and calculated with the unsteady laminar flow for the tube array. The characteristics of lift fluctuation over the cylinder tube array was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD for circular cylinder tube array was established from the present CFD study.

A Development of Green Transportation Design for Special Identity of Jecheon Area - centered on Exterior Design for Development of Design Business - (제천지역의 특성화를 위한 친환경운송수단 디자인개발 - 디자인비즈니스 개발을 위한 익스테리어 디자인을 중심으로 -)

  • Mun Keum-Hi
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.175-186
    • /
    • 2006
  • In the 21C, each nation controls exhaust fumes from automobiles and makes an effort to develop alternative energy because of serious environmental problem. Jechon area has many historical and cultural archeological sites. And Jechon city sponsors various cultural events. But the way of transportation which is connected with Jecheon and around sightseeing places is general and not ready yet. Therefore, if a special means of vehicle is developed, it could play an another role of sightseeing resources. Special identity of Jecheon area for establishment of green vehicle traffic system which gives Jecheon area specific character was investigated for theoretical background. Traffic system was studied for establishment of direction through existent successful case study. Moreover content, method, structure and advantage & shortcoming etc. of vehicle that use green energy resource such as solar car, fuel cell car, hybrid car, natural gas car etc. were examined. The suitable means of vehicle for Jechon area was proposed to three directions with research and investigation. After comparison and investigation by inquiry of each section's experts, the most suitable traffic system of which energy resource of car, form of vehicles, the complement, dimension of vehicles etc. were decided. Design proposal should be drawn according to process of automobile design in decided direction. Special Exterior design of vehicle that use green energy resource connecting Jecheon and around area should be suggested in Jecheon City Hall and Chungchong-bukdo provincial office for vivify image of cleanliness area.

  • PDF

Welding Fume and Metals Exposure Assessment among Construction Welders (건설현장 용접직종별 용접흄 및 금속류 노출 실태)

  • Park, Hyunhee;Park, Hae Dong;Jang, Jae-kil
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.147-158
    • /
    • 2016
  • Objectives: The objective of this study was to evaluate the assessment of exposure to welding fume and heavy metals among construction welders. Methods: Activity-specific personal air samplings(n=206) were carried out at construction sites of three apartment, two office buildings, and two plant buildings using PVC(poly vinyl chloride) filters with personal air samplers. The concentration of fumes and heavy metals were evaluated for five different types of construction welding jobs: general building pipefitter, chemical plant pipefitter, boiler maker, ironworker, metal finishing welder. Results: The concentration of welding fumes was highest among general building pipefitters($4.753mg/m^3$) followed by ironworkers($3.765mg/m^3$), boilermakers($1.384mg/m^3$), metal finishing welders($0.783mg/m^3$), chemical pipefitters($0.710mg/m^3$). Among the different types of welding methods, the concentration of welding fumes was highest with the $CO_2$ welding method($2.08mg/m^3$) followed by SMAW(shield metal arc welding, $1.54mg/m^3$) and TIG(tungsten inert gas, $0.70mg/m^3$). Among the different types of workplace, the concentration of welding fumes was highest in underground workplaces($1.97mg/m^3$) followed by outdoor($0.93mg/m^3$) and indoor(wall opening as $0.87mg/m^3$). Specifically comparing the workplaces of general building welders, the concentration of welding fumes was highest in underground workplaces($7.75mg/m^3$) followed by indoor(wall opening as $2.15mg/m^3$). Conclusions: It was found that construction welders experience a risk of expose to welding hazards at a level exceeding the exposure limits. In particular, for high-risk welding jobs such as general building pipefitters and ironworkers, underground welding work and $CO_2$ welding operations require special occupational health management regarding the use of air supply and exhaust equipment and special safety and health education and fume mask are necessary. In addition, there is a need to establish construction work monitoring systems, health planning and management practices.

Concentration of $NO_2$ and $SO_{2}$ of Bus Terminals in Seoul (서울시 버스터미널의 이산화질소 및 아황산가스 농도)

  • 손부순;장봉기;김영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.51-59
    • /
    • 1997
  • In this study, we researched the concentration of nitrogen dioxide($NO_{2}$) and sulfur dioxide($SO_{2}$) of indoor(waiting room) and outdoor(place of getting on the bus) at the bus terminals (Kang-Nam, Dong-Seoul and Nam-Bu) in Seoul to recognize the degree of pollution by exhaust gas of the diesel engine vehicles, and examine the factor that might affect air pollution of terminals. The concentration of $NO_{2}$ and $SO_{2}$ were measured in winter and summer, and the results of the analysis are as follows : The mean concentration of $NO_{2}$ was $57.49{\pm}21.86$ ppb and the concentration of outdoor with $64.10{\pm}27.69$ ppb was significantly higher than the indoor with $50.89{\pm}10.92$ ppb (p<0.05), and the highest with $73.54{\pm}25.54$ ppb at Kang-Nam terminal (p<0.01). The mean concentration of $NO_{2}$ was $62.80{\pm}24.74$ ppb in winter and $52.19{\pm}17.50$ ppb in summer, and had a not statistical difference. The mean concentration of $SO_{2}$ was $31.71{\pm}8.73$ ppb and the concentration of outdoor with $31.04{\pm}8.89$ ppb was similar to the indoor $32.29{\pm}8.70$ ppb, and the highest with $32.57{\pm}9.01$ ppb at Dong-Seoul terminal (p<0.05). The mean concentration of $SO_{2}$ in winter with $39.67{\pm}4.10$ ppb was significantly higher than in summer with $23.76{\pm}2.61$ ppb (p<0.01). The concentration of outdoor $NO_{2}$ at Kang-Nam terminal was 104, 84 ppb in winter and 81.20 ppb in summer, and had a statistical difference compared with the concentration of indoor $NO_{2}$ at Dong-Seoul and Nam-Bu terminals. The concentration of indoor $NO_{2}$ and $SO_{2}$ were higher than that of outdoor at Kang-Nam and Dong-Seoul terminals, but on the contrary, lower than that of outdoor at Nam-Bu terminal. The concentration of $NO_{2}$ and $SO_{2}$ at Nam-Bu terminal were lower than those at Kang-Nam and Dong-Seoul terminals. While the concentration of $SO_{2}$ show the large difference between winter and summer, that of $NO_{2}$ dose not.

  • PDF

Flavor Entrapment Effect of Porous Starch and Sensory Characteristic of Boiled Instant Noodles Using Flavor-entrapped Porous Starch (다공성 전분의 향포접 효율과 이를 활용한 생면의 관능적 특성)

  • Kim, Hae-Yeun;Lee, Gyu-Hee;Kang, Hyun-Ah;Shin, Myung-Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.658-662
    • /
    • 2007
  • In this study, wild sesame leaf aromas (WSLA) were extracted and the extracted aromas were entrapped in porous potato starch micelles. The entrapped aromas did not evaporate, even by heated water treatments, and remained until a physical treatment such as chewing. Thus, the entrapped WSLA starch was used to make precooked instant noodles in order to mask or/and reduce an unpleasant raw flour flavor. The efficiencies of the flavor entrapment were analyzed using gas-chromatography equipped with solid phase micro-extraction (SPME), as well as by sensory evaluation. The highest yield of the porous potato starch was shown as 82.4% at an inlet temperature (IT) of $170^{\circ}C$, an exhaust temperature (ET) of $90^{\circ}C$, and a feeding rate (FR) of 40 mL/min. In the porous starch made by IT at $200^{\circ}C$, ET at $100^{\circ}C$, and FR at 50 mL/min, the entrapment efficiency was 68% by GC analysis; this starch also had the highest WSLA and consumer acceptability, but the lowest raw flour flavor, according to the sensory evaluation results.

Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area (수도권 지역에서 환경대기 중 유해대기오염물질 (VOCs, Aldehydes, PAHs) 농도분포 특성 연구)

  • Han, Jin-Seok;Lee, Min-Do;Lim, Young-Jae;Lee, Sang-Uk;Kim, Young-Mi;Kong, Boo-Joo;An, Jun-Young;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.574-589
    • /
    • 2006
  • Although concentrations of hazardous air pollutants(HAPs) are very low in the atmosphere, a growing attention has been paid on such compounds due to their high toxicity and bioaccumulation potentials into human body. In order to control and manage the amount of these materials in ambient air, it is necessary to construct monitoring system of them and to know the current concentration level of HAPs above all. In this work, a wide range of HAPs has been measured in metropolitan area to recognize the present state of HAPs in this area. The measured concentration of VOCs was higher in order of Jeonnongdong, Jeongdong, and Yangsuri. The regional difference of VOCs concentration was also highest in spring. Its total VOCs was ranged from $15.17{\sim}41.45$ ppb. Benzene $0.43{\sim}2.32$ ppb showed similar concentration level with the result of previous researches in Seoul. This value is a little higher than the average concentration 0.92 ppb for national ambient air quality standards in Japan. The concentration of aldehydes in this study was lower than those of other researches. Previous works in Seoul metropolitan area showed that the concentration of formaldehyde and acetaldehyde were higher than 5 ppb. The concentration of gaseous and particulate PAHs was high in order of winter, spring, and summer More than 90% of PAHs with low molecular weight such as 2-rings and 3-rings PAHs existed in gas phase. On the other hands, PAHs with high molecular weight more than 5-rings PAHs almost existed in particulate. In spring, the concentration of gaseous PAHs was 24.38 $ng/m^3$ in Jeongdong. Among the particulate PAHs, the concentrations of Naphthalene, Benzo(b)fluoranthene, and Benzo(g, h, i)perylene were higher than others. Especially, the concentration of Benzo(a)pyrene, a important carcinogenic pollutant, was highest in winter 0.5 $ng/m^3$ and ranged from 0.03 to 0.3 $ng/m^3$ in spring and summer, which is lower than the monitoring result in 90's. These components were mainly originated from the vehicle exhaust or heating equipment use.

A Study on $NO_x$ Reduction in a Light Duty Diesel Vehicle Equipped with a SCR Catalyst (선택적환원촉매를 적용한 중소형 경유차량의 질소산화물 저감 특성 연구)

  • Park, Young-Joon;Hong, Woo-Kyoung;Ka, Jae-Geum;Cho, Yong-Seok;Joo, Jae-Geon;Kim, Hyun-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.118-124
    • /
    • 2011
  • To reach the Euro-6 regulations of PM and $NO_x$ for light-duty diesel vehicles, it will be necessary to apply the CDPF and the de-$NO_x$ catalyst. The described system consists of a catalytic configuration, where the CDPF is placed downstream of the diesel engine and followed by a urea injection unit and a urea-SCR catalyst. One of the advantages of this system configuration is that, in this way, the SCR catalyst is protected from PM, and both white PM and deposits become reduced. In the urea-SCR system, the injection control of reductant is the most important thing in order to have good performance of $NO_x$ reduction. The ideal ratio of $NH_3$ molecules to $NO_x$ molecules is 1:1 based on $NH_3$ consumption and having $NH_3$ available for reaction of all of the exhaust $NO_x$. However, under the too low and too high temperature condition, the $NO_x$ reduction efficiency become slower, due to temperature window of SCR catalyst. And space velocity also affects to $NO_x$ conversion efficiency. In this paper, rig-tests were performed to evaluate the effects of $NO_x$ and $NH_3$ concentrations, gas temperature and space velocity on the $NO_x$ conversion efficiency of the urea-SCR system. And vehicle test was performed to verify control strategy of reductatnt injection. The developed control strategy of reductant injection was improved over all $NO_x$ reduction efficiency and $NH_3$ consumption in urea-SCR system. Results of this paper contribute to develop urea-SCR system for light-duty vehicles to meet Euro-5 emission regulations.

Characteristics of Particle Number and Exhaust emission by Alteration of MTBE Contents in Gasoline (휘발유의 MTBE 함량 변화에 따른 입자개수 및 배출가스 특성)

  • Lim, Taeyoon;Song, Hoyoung;Park, Cheonkyu;Hwang, Inha;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.42-47
    • /
    • 2015
  • While the oxygen content of gasoline for automobiles in Korea is regulated to less than 2.3 weight %, European and World-Wide Fuel Charter (WWFC) regulate it to less than 2.7 weight %. The oxygen content of oxygen-containing materials increases the octane number of the fuel due to the secondary combustion in the internal combustion engine. It has been reported to be effective in reducing emissions, such as CO, HC, which is caused by incomplete combustion. Before 2000s in the United States and Europe, there has been many researches about vehicle application of the changes in oxygen content of gasoline. However, there are not many domestic researches which reflect the improvement of the fuel quality and automotive technology. In this study, fuels of three different oxygen contents were applied to GDI and MPI engines. As a result, the changes of fuel consumption and emission gas were very similar depends of the oxygen content changes. The PN in GDI engine was decreased as the oxygen content was increased.