• Title/Summary/Keyword: excreted-urine

Search Result 212, Processing Time 0.017 seconds

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

Frequency of Meals and Hyperlipogenesis of Rat (쥐의 급식회수(給食回數)와 체지방과잉합성(體脂肪過剩合成))

  • Han, In-K.
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.21-27
    • /
    • 1966
  • This experiment was performed to investigate the effect of the frequency of meals on the metatolism and the body composition of rats when equal amount of purified diet was ingested. Thirty approximately days old rats weighing 290 g and thirty-two about 40 days old rats weighing 180 g were employed for the period of 34 days. Rats fed ad libitum (10 to 15 meals per day) and two-meal per day were pair-fed and equal amount of diet was fed to each rat in pair. The experimental results obtained are summarized as follows: 1. Frequency of meal did not exert any effect on the body weight gain. However, rats fed two-meal per· day gained significantly (p <0.005) more fat and energy than ad libitum group. The rate of gain of protein in ad libitum group was higher than that of two-meal group. No difference was observed for the mineral deposition of rat body. 2. From the preperation of rat liver it was found that the activity of glucose-6-phosphate dehydrogenase was much higher for the rats fed two-meals per day than those fed ad libitum. Therefore, it is suggested that the metabolic pathway of carbohydrate for two-meal group has been shifted from glycolysis to Hexose Monophosphate Shunt and produced more NADPH which would be the essential cofactor of fatty acids synthesis. 3. The rate of excretion of urinary nitrogen for two-meal group was significantly (p<0.005) higher than that of ad libitum group. It is apparent that considerable amount of over-loaded amino acids by feeding two-big-meal daily· could not be used for the protein biosynthesis all at once and excreted following deamination through urine. The residual carbon chain could be served as a precursor of fatty acids synthesis. 4. The heat production rate of rats fed two-meal group was significantly (p<0.005) lower than that of ad libitum group. It seems possible that the activity of thyroid gland (and consequently BMR) can be depressed by the frequency of meal.

  • PDF