• 제목/요약/키워드: excitations

검색결과 829건 처리시간 0.022초

박용 발전기세트 진동 제어를 위한 강성 조절형 마운트 개발 (Development of stiffness adjustable mount for vibration control of marine diesel generator set)

  • 김원현;주원호;김동해
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2012
  • Marine diesel generator(D/G) set which is supported with resilient mounts for vibration isolation has been experienced the resonance problem by the main engine or propeller excitations and rigid body modes. Then the avoidance of resonance is difficult because the several excitations and 6 rigid body modes have to be considered simultaneously. In this paper, stiffness adjustable mounts was developed and proposed to control the natural frequencies of installed D/G set. Operating concept of the mount is that the total stiffness of mount can be changed according to the engagement of secondary rubber element in addition to primary one. The performance of mount was verified with the test rig and actual experiment in D/G set.

  • PDF

엔진 및 프로펠러 가진에 의한 위그선 복합재 날개 진동 해석 (Investigation on Forced Vibration Behavior of Composite Main Wing Structure Excited by Engine and Propeller)

  • 공창덕;윤재휘;박현범
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.217-221
    • /
    • 2007
  • 본 연구에서는 대상체인 소형 위그선의 주날개 구조를 엔진 및 프로펠러의 기진에 의한 강제진동 해석을 수행하였다. 대상 위그선은 2행정의 왕복엔진을 날개의 좌 우에 각각 장착하여 프로펠러에 의한 추력으로 비행하며, 미는 형식(Pusher Type)의 엔진 배열을 취하고 있다. 엔진의 주요 진동 특성인 H-mode 와 X-mode 를 특정 가진 주파수로 하여 주파수 응답 해석을 수행하였고, 엔진의 횡방향 진동 모드인 L-mode를 프로펠러에 회전에 의해 진동을 수반하는 기진 추력으로 가정하여 과도응답 해석을 수행하였다.

  • PDF

A stochastic optimal time-delay control for nonlinear structural systems

  • Ying, Z.G.;Zhu, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제31권5호
    • /
    • pp.621-624
    • /
    • 2009
  • The time delay in active and semi-active controls is an important research subject. Many researches on the time-delay control for deterministic systems have been made (Hu and Wang 2002, Yang et al. 1990, Abdel-Mooty and Roorda 1991, Pu 1998, Cai and Huang 2002), while the study on that for stochastic systems is very limited. The effects of the time delay on the control of nonlinear systems under Gaussian white noise excitations have been studied by Bilello et al. (2002). The controlled linear systems with deterministic and random time delay subjected to Gaussian white noise excitations have been treated by Grigoriu (1997). Recently, a stochastic averaging method for quasi-integrable Hamiltonian systems with time delay has been proposed (Liu and Zhu 2007). In the present paper, a stochastic optimal time-delay control method for stochastically excited nonlinear structural systems is proposed based on the stochastic averaging method for quasi Hamiltonian systems with time delay and the stochastic dynamical programming principle. An example of stochastically excited and controlled hysteretic column is given to illustrate the proposed control method.

Estimation of excitation and reaction forces for offshore structures by neural networks

  • Elshafey, Ahmed A.;Haddara, M.R.;Marzouk, H.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.1-15
    • /
    • 2011
  • Offshore structures are subjected to wind loads, wind generated wave excitations, and current forces. In this paper we focus on the wind generated wave excitations as the main source for the external forces on the structure. The main objective of the paper is to provide a tool for using deck acceleration measurements to predict the value of the force and moment acting on the offshore structure foundation. A change in these values can be used as an indicator of the health of the foundation. Two methods of analysis are used to determine the relationship between the force and moment acting on the foundation and deck acceleration. The first approach uses neural networks while the other uses a Fokker-Planck formulation. The Fokker-Plank approach was used to relate the variance of the excitation to the variance of the deck acceleration. The total virtual mass of the equivalent SDOF of the structure was also determined at different deck masses.

충돌 및 가동단 마찰을 고려한 지진하중을 받는 교량의 거동분석 (Effects of Pounding and friction upon Bridge Motions under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.193-202
    • /
    • 1999
  • effect of pounding and friction between oscillators upon global response behaviors of a bridge system under seismic excitations are examined in this study. For convenience an idealized mechanical model is proposed which still retains the dynamic characteristics of bridge motions using multiple oscillators, Each oscillator is consisting of four degrees-of-freedom to implement the pounding between the adjacent oscillators and friction at movable supports, The impact element and bi-linear model are utilized for pounding and friction at movable supports. The impact element and bi-linear model are utilized for pounding and friction respectively. Also the effects of abutments are investigated by adding the addition oscillators consisting of two degrees-of-freedom. The effects of pounding and frictions are determined using the proposed model and the effect of the abutment is also verified, It is found that both pounding and friction affect the bridge responses significantly while the first pounding occurs between the abutment and the nearby oscillator.

  • PDF

교각 비선형 거동을 고려한 낙교위험분석 (Unseating Failure of Bridge Spans with Nonlnear Pier Motion under Seismic Excitations)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.128-135
    • /
    • 1998
  • In this study, the unseating failure of the bridge spans under seismic excitations is examined by investigation the nonlinear response behaviors of the bridge system with reinforced concrete piers. To reduce the computational effort and to consider the effect of the foundation motions, a simplified 3 degree-of-freedom model is proposed, which retains the dynamic characteristics of the original bridge motions in concern. To imply the nonlinear behaviors of the RC piers to the system. a hysteresis model is utilized from the calculated force-deformation curve for the piers. The statistical characteristics of the maximum response displacements are obtained from the simulation results of 1000 time history analysis.

  • PDF

Microvibration analysis of a cantilever configured reaction wheel assembly

  • Zhang, Zhe;Aglietti, Guglielmo S.;Ren, Weijia;Addari, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • 제1권4호
    • /
    • pp.379-398
    • /
    • 2014
  • This article discusses the microvibration analysis of a cantilever configured reaction wheel assembly. Disturbances induced by the reaction wheel assembly were measured using a previously designed platform. Modelling strategies for the effect of damping are presented. Sine-sweep tests are performed and a method is developed to model harmonic excitations based on the corresponding test results. The often ignored broadband noise is modelled by removing spikes identified in the raw signal including a method of identifying spikes from energy variation and band-stop filter design. The validation of the reaction wheel disturbance model with full excitations (harmonics and broadband noise) is presented and flaws due to missing broadband noise in conventional reaction wheel assembly microvibration analysis are discussed.

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

원형제트의 제어를 통한 보텍스 구조 (Vortical structures from controlled circular jet)

  • 이대일;김정우;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2708-2712
    • /
    • 2008
  • The objective of this work is to study various vortical structures from controlled circular jet such as trifurcating and blooming jets. The numerical simulations of flow from a circular jet are carried out at $Re_D=4300$ based on the jet-exit velocity and jet diameter using large eddy simulation with the dynamic Smagorinsky model in a cylindrical coordinate system. The excitation for the controlled jet is achieved by combining axial and helical excitations. The axial velocity controlled by blowing and suction at the jet exit has several peaks in their cycle with respect to ratio of axial to helical excitations. This active control changes the spreading angle and vortical structures in the downstream region.

  • PDF

충돌을 고려한 지진하중을 받는 교량의 거동특성분석 (Dynamic Behaviors of the Simply Supported Bridge System under Seismic Excitations Considering Pounding Effects)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.231-238
    • /
    • 1999
  • The longitudinal dynamic behaviors of the bridge system consisting of multiple simply supported spans under seismic excitations are examined considering pounding effects. The pounding phenomena between adjacent girders which may consequently result in the span collapses are modeled by using the multi-degree-of-freedom system, The inelastic behavior of the RC pier is also considered by adopting the hysteresis loop model and the p-$\delta$ effect. Motions of the foundation and abutment are also considered but the local damage resulting from the girder pounding assumed to be neligible. The developed model is found to give the appropriate information of the dynamic characteristics of the bridge behavior. It is observed that the pounding effect becomes significant as the peak acceleration of the seismic excitation increases. Under minor earthquakes the pounding tends to increase the relative displacements while under strong earthquakes it tends to decrease the relative displacements by restricting the longitudinal girder motions, therefore it is suggested that the pounding effects should be considered in the analysis of the relative displacements of the longitudinally adjacent girder motions.

  • PDF