• Title/Summary/Keyword: excitation table

Search Result 118, Processing Time 0.03 seconds

Shaking Table Tests of A 1/5-Scale 3-Story Nonductile Reinforced Concrete Frame (1/5 축소 비연성 3층 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우;허윤섭;고동우;강귀용;김상대;정하선;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.581-586
    • /
    • 1997
  • The objective of this study is to investigate the behavior of a 1/5-scale 3-story nonductile reinforced concrete frame subjected to earthquake excitation. For this purpose, Taft N21E earthquake accelerogram was simulated by using 3m${\times}$5m shaking table. When the input acceleration is compared to that of output, it can be found that simulation of shaking table is excellent. From the results of test with Taft N21E earthquake accelerogram adjusted to peak ground acceleration(PGA) 0.06g and 0.12g(maximum acceleration in korea seismic code) the model responded in elastic behavior and it is found that the existing building in our country are safe against the levels of PGA 0.06g and 0.12g.

  • PDF

Detailed Finite Element Analysis of Full-scale Four-story Steel Frame Structure subjected to Consecutive Ground Motions

  • Tagawa, Hiroyuki;Miyamura, Tomoshi;Yamashita, Takuzo;Kohiyama, Masayuki;Ohsaki, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • Detailed finite element (FE) analyses of a full-scale four-story steel frame structure, subjected to consecutive 60% and 100% excitations from the JR Takatori records during the 1995 Hyogoken-Nanbu earthquake, are conducted using E-Simulator. The four-story frame was tested at the largest shake-table facility in the world, E-Defense, in 2007. E-Simulator is a parallel FE analysis software package developed to accurately simulate structural behavior up to collapse by using a fine mesh of solid elements. To reduce computational time in consecutive dynamic time history analyses, static analysis with gravity force is introduced to terminate the vibration of the structure during the analysis of 60% excitation. An overall sway mechanism when subjected to 60% excitation and a story mechanism resulting from local buckling of the first-story columns when subjected to 100% excitation are simulated by using E-Simulator. The story drift response to the consecutive 60% and 100% excitations is slightly smaller than that for the single 100% excitation.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

Pounding analysis of RC bridge considering spatial variability of ground motion

  • Han, Qiang;Dong, Huihui;Du, Xiuli;Zhou, Yulong
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1029-1044
    • /
    • 2015
  • To investigate the seismic pounding response of long-span bridges with high-piers under strong ground motions, shaking table tests were performed on a 1/10-scaled bridge model consisting of three continuous spans with rigid frames and one simply-supported span. The seismic pounding responses of this bridge model under different earthquake excitations including the uniform excitation and the traveling wave excitations were experimentally studied. The influence of dampers to the seismic pounding effects at the expansion joints was analyzed through nonlinear dynamic analyses in this research. The seismic pounding effects obtained from numerical analyses of the bridge model are in favorable agreement with the experimental results. Seismic pounding effect of bridge superstructures is dependent on the structural dynamic properties of the adjacent spans and characteristics of ground motions. Moreover, supplemental damping can effectively mitigate pounding effects of the bridge superstructures, and reduce the base shear forces of the bridge piers.

Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge (지진격리 강재 케이블 교량의 다지점 진동대 실험)

  • Kim, Seong-Do;Ahn, Jin-Hee;Kong, Young-Ee;Choi, Hyoung-Suk;Cheung, Jin-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

Seismic response of utility tunnels subjected to different earthquake excitations

  • Wang, Chenglong;Ding, Xuanming;Chen, Zhixiong;Feng, Li;Han, Liang
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.67-79
    • /
    • 2021
  • The influence of ground motions on the seismic response of utility tunnels was investigated. A series of small-scale shaking table model tests were carried out under uniform excitation in the transverse direction. Different peak accelerations of EL-Centro and Taft earthquake waves were applied. The acceleration responses, earth pressure, seismic strain, bending moment and structure deformations were measured and discussed. The results showed that the types of earthquake waves had significant influences on the soil-structure acceleration responses. However, the amplitude of the soil acceleration along the depth showed consistent variation regardless of the types of earthquake waves and tunnels. The horizontal soil pressure near the top and bottom slabs showed obviously larger values than those at other depths. In general, the strain response in the outer surface was more significant than that on the inner surface, and the peak strain in the end section of the model was larger than that in the middle section. Moreover, the bending moment at the corner points was much larger than that at middle point, and the bending moment was greatly affected by both input accelerations and seismic wave types. The opposite direction of shear deformation on the top and bottom slabs presented a rotation trend of the model structure.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Seismic response control of irregular asymmetric structure with voided slabs by distributed tuned rotary mass damper devices

  • Shujin Li;Irakoze Jean Paula;Ling Mao
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.455-467
    • /
    • 2023
  • This study focuses on demonstrating the effectiveness of vibration control of tuned rotary mass damper (TRMD) for reducing the bidirectional and torsional response of the irregular asymmetric structure with voided slabs under earthquake excitations. The TRMD arranged in plane of one-story eccentric structure is proposed as a distributed tuned rotary mass damper (DTRMD) system. Lagrange's equation is used to derive the equations of motion of the controlled system. The optimum position and number of TRMD are numerically investigated under harmonic excitation and the control effects of different distributions are discussed. Furthermore, a shaking table test is conducted under different excitation cases, including free vibration, forced vibration and seismic wave to investigate the absorption performance of the device. The numerical simulations of different distributions of the TRMDs show that the DTRMDs are more effective in reduction of the displacement response of the asymmetric structure under the same mass ratio, even when the degree of eccentricity becomes large. However, with small degree of eccentricity, the unreasonable asymmetrical arrangement may cause the increase of the peak value of the rotational angular displacement. Finally, the experimental investigations exhibit similar results of translational displacement of the structure. It is concluded that the vibration of the irregular asymmetric structure can be controlled more economically and effectively by reducing the mass ratio through reducing the quantity of TRMDs at the high stiffness end.

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

Estimation of Dynamic Interface Friction Properties of Geosynthetics (토목섬유의 동적 경계면 마찰특성 평가)

  • 김동진;서민우;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.265-275
    • /
    • 2003
  • In this study, shaking table tests were conducted to estimate dynamic interface properties between geosynthetics such as geomembrane, geotextile and geosynthetic clay liner. Accelerations of both shaking table and upper box, and relative displacements between geosynthetics under dynamic loading were measured. Also, the influence of normal stress, frequency of excitation and dry/wet conditions were investigated through the analyses of test results. from the test results, it was found that there is a limited acceleration below which dynamic farce can be transmitted between geosynthetics without the loss of horizontal acceleration. Dynamic interface friction angle between geosynthetics could be calculated through the limited acceleration. Relative displacements induced along geosynthetic interfaces under dynamic loading were not consistent depending on the type of interface and test conditions. The maximum slip displacements between geosynthetics are normalized and normalized slip equations were developed for each interface. By using the normalized slip equation, maximum slip displacements for the geosynthetic interface could be predicted for the given base acceleration and frequency of excitation.