• Title/Summary/Keyword: excimer fluorescence

Search Result 53, Processing Time 0.019 seconds

Effect of Lidocaine-HCl on Microviscosity of Phosphatidylcholine Model Membrane

  • Chung, In-Kyo;Kim, Inn-Se;Choi, Chang-Hwa;Cho, Goon-Jae;Kim, Jin-Bom;Son, Woo-Sung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.243-251
    • /
    • 2000
  • In order to provide a basis for studying the molecular mechanism of pharmacological action of local anesthetics and to develop a fluorescence spectroscopic method which can detect the microviscosity of native and model membranes using intramolecular excimerization of 1,3-di(l-pyrenyl)propane (Py-3-Py), we examined the effect of lidocaine HCl on the microviscosity of model membranes of phosphatidylcholine fraction extracted from synaptosomal plasma membrane vesicles (SPMVPC). The excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in liquid paraffin was a simple linear function of $T/{\eta}.$ Based on this calibration curve, the microviscosity values of the direct probe environment in SPMVPC model membranes ranged from $234.97{\pm}48.85$ cP at $4^{\circ}C$ to %19.21{\pm}1.11$ cP at $45^{\circ}C.$ At $37^{\circ}C,$ a value of $27.25{\pm}0.44$ cP was obtained. The lidocaine HCl decreased the microviscosity of SPMVPC model membranes in a concentration-dependent manner, with a significant decrease in microviscosity value by injecting the local anesthetic even at the concentration of 0.5 mM. These results indicate that the direct environment of Py-3-Py in the SPMVPC model membranes is significantly fluidized by the lidocaine HCl. Also, the present study explicitly shows that an interaction between local anesthetics and membrane lipids is of importance in the molecular mechanism of pharmacological action of lidocaine HCl.

  • PDF

Effects of Ethanol on the Fluidity of Plasma Membrane Vesicles Isolated from Cultured Mouse Myeloma Cell Line Sp2/0-Ag14 (Ethanol이 배양된 Mouse Myeloma Cell Line Sp2/0-Ag14로부터 분리한 형질막의 유동성에 미치는 영향)

  • Yun, Il;Chung, In-Kyo;Park, Yeong-Min;Kim, Jin-Bom;Yu, Seoung-Ho;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.149-156
    • /
    • 1993
  • Intramolecular excimerization of 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to examine the effects of ethanol on the rate and range of lateral diffusion of bulk bilayer structures of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14 (Sp2/0-PMV). In a concentration-dependent manner, ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the Sp2/0-PMV and decreased the anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) of DPH in the Sp2/0-PMV. This indicates that ethanol increased both the lateral and rotational diffusion of the probes in the Sp2/0-PMV. Selective quenching of DPH by trinitrophenyl groups was utilized to examine the transbilayer asymmetric rotational diffusion of the Sp2/0-PMV. The anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) of DPH in the inner monolayer were 0.022, 0.029, and 0.063, respectively, greater than calculated for the outer monolayer of the Sp2/0-PMV. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the transbilayer asymmetric effects of ethanol on the range of rotational diffusion of the Sp2/0-PMV. Ethanol had a greater fluidizing effect on the outer monolayer as compared to the inner monolayer of the Sp2/0-PMV. It has been proven that ethanol exhibits a selective rather than nonselective fluidizing effect within transbilayer domains of the Sp2/0-PMV.

  • PDF

Determination of Microviscosity and Location of 1,3-Di(1-pyrenyl) propane in Brain Membranes

  • Kang, Jung-Sook;Kang, In-Goo;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • We determined the microviscosity of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex and liposomes of total lipids (SPMTL) and phospholipids (SPMPL) extracted from SPMV. Changes in the microviscosity induced by the range and rate of lateral diffusion were measured by the intramolecular excimerization of 1, 3-di(1-pyrenyl)propane (Py-3-Py). The microviscosity values of the direct probe environment in SPMV, SPMTL and SPMPL were 38.17, 31.11 and 27.64 cP, respectively, at$37^{\circ}C$and the activation energies $(E_a)$ of the excimer formation of Py-3-Py in SPMV, SPMTL and SPMPL were 8.236, 7.448 amd 7.025 kcal/mol, respectively. Probe location was measured by polarity and polarizability parameters of the probe Py-3-Py and probe analogues, pyrene, 1-pyrenenonanol and 1-pyrenemethyl-3${\beta}$-hydroxy-22, 23-bisnor-5-cholenate (PMC), incorporated into membranes or solubilized in reference solvents. There existed a good linear relationship between the first absorption peak of the $^1_a$ band and the polarizability parameter $(n^{2}-1)/(2n^{2}+1)$.The calculated refractive index values for SPMV, SPMTL and SPMPL were close to 1.50, which is higher than that of liquid paraffin (n=l.475). The probe location was also determined by using a polarity parameter $(f-1/2f^{I})$. Here f=$({\varepsilon}-1)/(2{\varepsilon}+1)$ is the dielectric constant function and $f^I=(n^2-1)/(2n^2+1)$ is the refractive index function. A correlation existed between the monomer fluorescence intensity ratio and the solvent polarity parameter. The probes incorporated in SPMV, SPMTL, and SPMPL report a polarity value close to that of 1-hexanol $({\varepsilon}=13.29)$. In conclusion, Py-3-Py is located completely inside the membrane, not in the very hydrophobic core, but displaced toward the polar head groups of phospholipid molecules, e.g., central methylene region of aliphatic chains of phospholipid molecules.

  • PDF