• Title/Summary/Keyword: excess soil moisture

검색결과 49건 처리시간 0.025초

산지삼포에서 면삼율 결주율 및 토양화학성의 상호관계 (Relationship among Dormant Root Rate Missing Root Rate and Soil Chemical Characteristics in Ginseng Plantations)

  • 박훈;김갑식;변정수
    • 한국작물학회지
    • /
    • 제30권2호
    • /
    • pp.180-183
    • /
    • 1985
  • 산지삼포에서 면삼율과 결근율을 조사하여 토양의 화학성과 단순상관 관계를 보았다. 면삼율은 근령에 관계가 없었고 결근율과 정상관을 보이는 경우가 많았다. 면삼율은 토양의 유효인산함량 및 인산일수분비와 유의정상관을 보였다. 결근율은 토양 수분 및 Ca과 유의부상관, 인산일수분비와 유의정상관을 보였다. 이상의 결과는 면삼과 결근의 공통요인으로 토양인산의 과다와 토양수분의 부족임을 시사한다.

  • PDF

Responses of Capsicum annum (red pepper) to Fertilization Rates at Various Soil Moisture Conditions

  • Jung, Kang-Ho;Sonn, Yeon-Kyu;Han, Kyoung-Hwa;Zhang, Yong-Seon
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.332-339
    • /
    • 2014
  • This research was performed to test the hypothesis that the optimal fertilization rate for red pepper is changed by soil moisture condition. The experiment was conducted in rainfall-intercepted fields in Suwon, South Korea from 2002 to 2003. Soil was irrigated at 30, 50, or 80 kPa of soil moisture tension at 20 cm soil depth in 2002 and 30, 50, 100, or 150 kPa in 2003. For both years, fertilization was performed with four levels: none, 0.5, 1, and 1.5 times of the recommended N, P, and K fertilization rate. The irrigation amount was the greatest at 30 kPa irrigation while the water use efficiency increased with decrease of irrigation amount. The Irrigation amount was 508 mm at 30 kPa irrigation and ranged from 355 mm to 435 mm at 50 kPa irrigation. The maximum yield was found at 30 kPa irrigation and 1.5 times of the recommend fertilization rate in 2002 and 2003. The yield index of red pepper increased linearly with the fertilization rate at 30 kPa which implied that excess irrigation induced nutrient leaching and reduced nutrient availability. The maximum yield in 50 kPa and 80 kPa was found at the recommend fertilization rate while the yield decreased by fertilization at 100 kPa and 150 kPa irrigation. It implies that reduction of fertilization is the feasible practice to mitigate drought stress in fields without stable irrigation resources.

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

간석지 벼 입모율 향상을 위한 건답직파 방법 비교 (Comparison of Dry-Seeding Methods for Improving Rice Seedling Stand on Reclaimed Saline Soil)

  • 이인;성기영
    • 한국작물학회지
    • /
    • 제41권3호
    • /
    • pp.370-375
    • /
    • 1996
  • 포승통의 미사질식양토인 간척지에서 벼 건답직파재배 가능성을 구명하고자 서안벼를 공시하고, 간이온실에서는 시용 및짚의 양과 토양수분조건을 달리 하여 파종심도별 벼의 출아율을 조사하고, 실제 포장 시험에서는 산파후 로타리 복토 유무에 따른 벼의 입모 및 수량성의 차리를 비교 검토한 결과는 다음과 같다. 1. 볏짚 처리(특히, 4ton, 6ton/ha)가 무처리보다 출아율이 높았다. 2. 헥타르 당 볏짚 4ton을 처리하고 파종심도가 얕을수록 출아율이 높았으며 초장도 현저히 커졌다. 3. 토양수분의 적습조건은 과습조건보다 출아율이 높았으며, 초장은 적습조건에서 파종심도가 얕을수록 커졌다. 4. 산파후 로타리 복토유무별 입모수는 로타리무복토(73개 /m$^2$)가 로타리복토(44개 /m$^2$)보다 많았다. 5. m$^2$ 당 수수는 로타리무복토가 로타리복토보다 많았고, 수량도 같은 경향을 보였다.

  • PDF

퇴비 및 폐타이어 Granule을 이용한 악취 제거 (Odor Removal by Using Compost and Granular Scrap Tires)

  • 정윤진
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.43-50
    • /
    • 1999
  • In spite of low energy requirement, and operation and construction cost, biofilters with soil beds have not been operated efficiently. Because of excess moisture in winter and rainy periods, saturated pores in the bed prevent passage and sorption of odorous compounds. Sometimes this results in septic conditions that release previously sorbed and oxidized sulfur. Therefore, an economical and effective alternative needs to be developed. The objectives of this study were to confirm applicability of the granular scrap tires with compost for treating odorous gas as well as to obtain optimum design parameters for proposed system. In lab-scaled test, multiple stage reactors had lower headloss than a single stage reactor and less headloss was occurred for the gas with higher moisture content. For practical purpose, pilot-scaled reactor was operated to remove odor from septic tank, manure and animal wastewater treatment plant and composting machine. According to the results of pilot scaled test, $H_2S$ can be always removed completely and ammonia/amine can be removed excellently when proper moisture content is provided. The results from lab and pilot test showed that granular scrap tire could be replaced with soil as supporting material for biofilter showed excellent drainage because of its ability to reject moisture.

  • PDF

Modeling the effects of excess water on soybean growth in converted paddy field in Japan. 2. modeling the effect of excess water on the leaf area development and biomass production of soybean

  • Nakano, Satoshi;Kato, Chihiro;Purcell, Larry C.;Shiraiwa, Tatsuhiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.308-308
    • /
    • 2017
  • The low and unstable yield of soybean has been a major problem in Japan. Excess soil moisture conditions are one of the major factors to restrict soybean productivity. More than 80 % of soybean crops are cultivated in converted paddy fields which often have poor drainage. In central and eastern regions of Japan, the early vegetative growth of soybean tends to be restricted by the flooding damage because the early growth period is overlapped with the rainy season. Field observation shows that induced excess water stress in early vegetative stage reduces dry matter production by decreasing intercepted radiation by leaf and radiation use efficiency (RUE) (Bajgain et al., 2015). Therefore, it is necessary to evaluate the responses of soybean growth for excess water conditions to assess these effects on soybean productions. In this study, we aim to modify the soybean crop model (Sinclair et al., 2003) by adding the components of the restriction of leaf area development and RUE for adaptable to excess water conditions. This model was consist of five components, phenological model, leaf area development model, dry matter production model, plant nitrogen model and soil water balance model. The model structures and parameters were estimated from the data obtained from the field experiment in Tsukuba. The excess water effects on the leaf area development were modeled with consideration of decrease of blanch emergence and individual leaf expansion as a function of temperature and ground water level from pot experiments. The nitrogen fixation and nitrogen absorption from soil were assumed to be inhibited by excess water stress and the RUE was assumed to be decreasing according to the decline of leaf nitrogen concentration. The results of the modified model were better agreement with the field observations of the induced excess water stress in paddy field. By coupling the crop model and the ground water level model, it may be possible to assess the impact of excess water conditions for soybean production quantitatively.

  • PDF

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

Numerical Modeling of Water Transfer among Precipitation, Surface Water, Soil Moisture and Groundwater

  • Chen, Xi;Zhang, Zhicai;Chen, Yongqin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.2-11
    • /
    • 2006
  • In the processes of hydrological cycle, when precipitation reaches the ground surface, water may become surface runoff or infiltrate into soil and then possibly further percolate into groundwater aquifer. A part of the water is returned to the atmosphere through evaporation and transpiration. Soil moisture dynamics driven climate fluctuations plays a key role in the simulation of water transfer among ground surface, unsaturated zone and aquifer. In this study, a one-layer canopy and a four-layer soil representation is used for a coupled soil-vegetation modeling scheme. A non-zero hydraulic diffusivity between the deepest soil layer modeled and groundwater table is used to couple the numerical equations of soil moisture and groundwater dynamics. Simulation of runoff generation is based on the mechanism of both infiltration excess overland flow and saturation overland flow nested in a numerical model of soil moisture dynamics. Thus, a comprehensive hydrological model integrating canopy, soil zone and aquifer has been developed to evaluate water resources in the plain region of Huaihe River basin in East China and simulate water transfer among precipitation, surface water, soil moisture and groundwater. The newly developed model is capable of calculating hydrological components of surface runoff, evapotranpiration from soil and aquifer, and groundwater recharge from precipitation and discharge into rivers. Regional parameterization is made by using two approaches. One is to determine most parameters representing specific physical values on the basis of characterization of soil properties in unsaturated zone and aquifer, and vegetations. The other is to calibrate the remaining few parameters on the basis of comparison between measured and simulated streamflow and groundwater tables. The integrated modeling system was successfully used in the Linhuanji catchment of Huaihe plain region. Study results demonstrate that (1) on the average 14.2% of precipitation becomes surface runoff and baseflow during a ten-year period from 1986 to 1995 and this figure fluctuates between only 3.0% in drought years of 1986, 1988, 1993 and 1994 to 24.0% in wet year of 1991; (2) groundwater directly deriving from precipitation recharge is about 15.0% t of the precipitation amount, and (3) about half of the groundwater recharge flows into rivers and loses through evaporation.

  • PDF

Interspecific Differences of the Capacities on Excessive Soil Moisture Stress for Upland Crops in Converted Paddy Field

  • Jung, Ki-Yuol;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sanghun;Kang, Hang-Won
    • 한국토양비료학회지
    • /
    • 제49권2호
    • /
    • pp.157-167
    • /
    • 2016
  • The interspecific estimation for tolerance capacities of upland crop species to excessive soil water stress in paddy field is significant in agricultural practices. Most of upland crops can be damaged by either excessive soil water or capillary rise of the water table during rainy season in paddy fields. The major objective of this study was to evaluate water stress of upland crops under different drainage classes in converted paddy field. This experiment was carried out in poorly drained soil (PDS) and imperfectly drained soil (IDS) of alluvial sloping area located at Toero-ri, Bubuk-myeon, Miryang-si, Gyeongsangnam-do. The soil was Gagog series, which was a member of the fine silty, mixed, nonacid, mesic family of Aeric Endoaquepts (Low Humic-Gley soils). Two drainage methods, namely under Open ditch drainage methods (ODM) and, Closed pipe drainage methods (PDM) were installed within 1-m position at the lower edge of the upper paddy fields. The results showed that sum of excess water days ($SWD_{30}$), which was used to represent the moisture stress index, was 42 days (the lowest) in the PDM compared with 110 days in the ODM. Most of upland crops were more susceptible to excessive soil water during panicle initial stage on more PDS than on IDS. Yield of upland crops in the PDM was continuously increased by the rate of 15.1% on sorghum, 15.4% foxtail millet, 53.6% proso millet, 49.6% soybean and 47.9% adzuki bean as compared in the ODM. The capacity for tolerance by excessive soil water based on yield of each upland crop in the poorly drained sloping paddy fields was the order of sorghum, soybean, foxtail millet, proso millet and adzuki bean. Therefore, Sorghum is relatively tolerant to excessive soil water conditions and, may be grown successfully in converted paddy field.

맥류내습성에 관한 연구 제4보 . 맥류의 생육시기와 토양과습의 영향 (Studies on the Wet-injury Resistance of Wheat and Barley Varieties. IV. Effect of Excess-Moisture in the Soil on the Growth of wheat, six row and two row barley at Various Stage)

  • 서형수
    • 한국작물학회지
    • /
    • 제23권1호
    • /
    • pp.26-31
    • /
    • 1978
  • 맥류의 생육시기에 따라 토양분을 과습상태로 침수하였을 때 생육과 수양에 미치는 피해양상과 정도의차이를 조사하였는 바 그 결과를 요약하면 다음과 같다. 1. 침수기간중 토양온도는 표준구보다 침수구가 고온으로 경과하였는데 오후 3시가 오전 10시보다 더욱 높았으며 토양산화환원전위는 표준구에 비하여 침수구가 현저히 저하하였다. 2. 침수로 인한 초장생육에 피해가 심한 시기는 전맥종이 신장기였으며 다음은 분얼기였고 경수증가피해가 심한 시기는 반대로 분얼기이고 다음이 신장기였으며 수잉기와 등숙기에는 그 차가 경징하였는데 맥종별로 초장과 경수피해가 큰것은 대맥이었고 적은것은 소맥이었다. 3. 침수로 인하여 수획시 간장감소가 심하였던 시기는 이조맥과 대맥은 신장기였으나 소맥은 수잉기였으며 수장은 이조맥과 소맥이 분얼기에 가장 저하하였다. 주당수수와 수당립수의 감소피해가 큰 시기는 전맥종의 유방분얼이 결정되고 소수분화가 이루어지는 분얼기와 신장기였다. 5. 천립중의 피해가 큰 시기는 입의 대소가 결정되는 수잉기로서 특히 소맥과 이조맥의 피해가 심하였는데 이때는 상위절간신장이 조해되어 출수는 지연되고 등숙이 불량하였다. 6. 침수구의 수양감수는 이조맥과 대맥은 수수와 입수감소 피해가 심하였던 신장기였고 다음은 분얼기였으며 소맥은 천립중의 피해가 큰 수잉기였고 다음이 신장기였는데 맥종별로는 소맥의 피해가 적고 다음이 대맥이었으며, 이조맥의 감수가 가장 심한 경향이었다.

  • PDF