• Title/Summary/Keyword: excess rainfall

Search Result 75, Processing Time 0.025 seconds

Characteristics Analyses of Timely Rainfall Events Above Probability Precipitation on Each Frequency (빈도별 확률강우량을 초과하는 시간강우사상의 특성 분석)

  • Oh, Tae Suk;Kim, Eun Cheol;Moon, Young-Il;Ahn, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.513-526
    • /
    • 2009
  • The flood control countermeasure establish for reducing of the flood damages. Design frequency usually reflects the current situation of the station, the importance and the design rainfall. Therefore, this study calculated frequency for duration maximum rainfall with the area which happened the flood damages by main heavy rainfall events recently. Also, to analyze for the temporal characteristics of rainfall event exceed by design rainfall, excess rainfall and excess frequency and excess rainfall per event calculated. To grasp the temporal variation, About excess rainfall and excess frequency and excess rainfall per event have analyzed by change and trend test. Also, rainfall observatory did grouping by cluster analysis using position of rainfall observatory and characteristic timely rainfall. For the grouping rainfall observatory by the cluster analysis calculated average of excess rainfall and excess frequency and excess rainfall per event. To compare for the temporal characteristics, the change and trend test had analyzed about excess rainfall, excess frequency by regional groups.

An Offer of a Procedure Calculating Hourly Rainfall Excess by Use of Horton Infiltration Model in a Basin (유역 단위 Horton 침투모형을 적용한 시간단위 초과우량 산출 절차 제시)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • It is basic for a flood prediction to calculate direct runoff from rainfall in a basin by the rainfall-runoff model. The direct runoff is calculated from rainfall excess or effective rainfall based on a rainfall-runoff model. The total rainfall minus rainfall loss equals rainfall excess with time. This loss can be treated equal to an infiltration loss under the assumption that the infiltration is a major one among the losses in the rainfall-runoff model. Practically obtaining the infiltration loss $\Phi$ index method, W index method or modified ones of these have been used. In this study it is assumed the loss of rainfall in a basin be a well-known Horton infiltration mechanism. And in case that the parameter set is given in the Horton infiltration model a procedure and assumption for calculating hourly infiltration loss and rainfall excess are offered and the results of its application are compared with those of $\Phi$ index method. By this study it is well shown the value of Horton infiltration function is exponentially decay with time as the Horton infiltration mechanism.

Rainfall Excess Model for Forest Watersheds (산지유역의 초과우량 추정 모형)

  • 남선우;최은호
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.351-361
    • /
    • 1990
  • Considering the hydrological los components such as evapotranspiration, interception, surface storage and infiltration, a rainfall excess model for forest watersheds is derived. The Morton model is adopted to estimate the evapotranspration under the wetted environmental conditions. Canopy effects and ground cover interception storage rates are used to determine the net rainfall rates arrived on the surface soil. The infiltration capacity on the permeable surface is estimated from the revised Green-Ampt model derived for the natural unsteady rainfall events. The rainfall excess model derived is applied with the data from Jangpyung watershed, one of the representative watersheds of IHP. Parameters which are calibrated with the data from ten storms, the hydrometeorological, land use and soil informations, and other researchers' papers are presented.

  • PDF

Land Cover Classification and Effective Rainfall Mapping using Landsat TM Data (Landsat TM 자료를 이용한 토지피복분류와 유효우량도의 작성)

  • Shin, Sha-Chul;Kwon, Gi-Ryang;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.411-423
    • /
    • 2002
  • Accurate and real time forecasting of runoff has a high priority in the drainage basins prone to short, high intensity rainfall events causing flash floods. To take into account the resolution of hydrological variables within a drainage basin, use of distributed system models is preferred. The Landsat Thematic Mapper(TM) observations enable detailed information on distribution of land cover and other related factors within a drainage basin and permit the use of distributed system models. This paper describes monitoring technique of rainfall excess by SCS curve number method. The time series maps of rainfall excess were generated for all the storm events to show the spatiotemporal distribution of rainfall excess within study basin. A combination of the time series maps of rainfall excess with a flow routing technique would simulate the flow hydrograph at the drainage basin outlet.

유성지역 소유역에서 추적자(Cl)를 이용한 강우사상에 따른 지표수로부터 기저유출의 분리

  • Jo Seong-Hyeon;Ha Gyu-Cheol;Go Dong-Chan;Jo Min-Jo;Song Mu-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.352-358
    • /
    • 2005
  • This study aims to separate hydrograph into baseflow and event water to calculate baseflow rate during a rainfall in small catchments, Yuseong, Daejeon, The hydrograph of stream during a period with no excess rainfall will decay. The discharge is composed entirely of groundwater contributions. During the period, the Cl concentration of the stream water can be regarded as being in equilibrium with that of the groundwater. Using Cl as a conservative tracer, two-component hydrograph separations were performed from end point of the period to next end point. The required data were obtained by monitoring of the surface water table, along with discharge rate of stream. Cl concentration of rainfall, surface water were measured and recorded. Hydrograph separation, a mixing model using chemical tracer is applied to chemical hydrograph separation technique. These results show that baseflow rates are 31.6% of rainfall in the catchments during study period.

  • PDF

Study on storage change analysis of Samsan reservoir by applying calibrated soil parameters (토양 매개변수 보정에 따른 삼산저수지의 저류량 변화 분석)

  • Park, Sanghyun;Kim, Hyeonjun;Jang, Cheolhee;Birhanu, Dereje
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.355-355
    • /
    • 2019
  • 본 연구에서는 물리적 매개변수 기반의 물 순환 해석 모형인 CAT(Catchment hydrologic cycle Assessment Tool)을 이용하여 보령댐 유역 상류에 위치한 삼산저수지의 저류량을 분석하였다. 연구기간은 2012~2017년이며 2015년 발생한 가뭄 대책의 일환으로 2016년 이후 금강과 보령댐을 잇는 도수로를 설치하여 유역내로 외부유입량이 유입되었다. 이에 본 연구에서는 보다 정확한 저류량 산정을 위해 모의 기간을 2012~2015년 및 2016~2017년으로 나누어 연구를 수행하였다. 매개변수 보정에 앞서 CAT에서 제공하는 세 가지 침투해석방법인 Rainfall Excess, Green&Ampt, Horton 방법을 모두 적용하여 모의하였으며 그 결과 Rainfall Excess 침투방법을 적용했을 때의 모의 정확도가 비교적 높게 나타나는 것을 확인할 수 있었다. 이에 본 연구에서는 Rainfall Excess 침투방법의 주요 토양 관련 매개변수인 토양수분율(${\theta}s$), 연직방향 투수계수(ks) 및 사면방향 투수계수(ksi)를 대상으로 전역최적화기법(SCEUA-P)을 이용한 보정을 수행하였으며 보정 전 후의 모의 저류량과 관측 저류량을 연도별로 비교 및 분석하였다.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교연구)

  • Baek, Hyo-Sun;Lee, De-Young;Kang, Young-Buk;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1798-1802
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation.The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall.The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Comparison and analysis of peak flow by Areal Reduction Factor (면적감소계수에 따른 첨두유량의 비교 분석)

  • Lee, Dae-Young;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.95-102
    • /
    • 2007
  • The practice of business estimate flood discharge by rainfall-flow relation that is easy collection of observation data. The important factor is rainfall, coefficient of runoff, and drainage area for analysis of runoff-flow relation. The practice of business usually use probability rainfall that use a weighted average value after each observation post estimate probability of non-same time. It has more error than same time probability rainfall, and it can excess of estimation because it can't consider space distribution of rainfall. The study of result showed similar aspect with existing ARF but width of coefficient become smaller. And the comparison of peak flow did not different what used by ARF and same time probability rainfall(A group). But non-same time probability rainfall is bigger 25% more than another(B group). Between A group and B group of the difference increased with the lapse of time.

  • PDF

Comparative Study on Calculation Method for Design Flood Discharge of Dam (댐 설계홍수량 산정방법에 관한 비교연구)

  • Lee, Jai-Hong;Lee, Jong-Kyu;Kim, Tae-Woong;Kang, Ji-Ye
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.941-954
    • /
    • 2011
  • In this study, past method and recent method for flood discharge with domestic multi-purpose dams in Korea were compared and analyzed with respect to the scale of watershed. Rainfall depth, temporal pattern, rainfall excess, rainfall-runoff model, parameter estimation and base flow were selected as the principal factors affecting flood discharge and effects on flood discharge were analyzed quantitatively by using sensitivity analysis. The results showed that the flood discharges calculated by past and recent method increased and decreased with a wide range of discharge with respect to the scale of watershed. The reason for decrease of flood discharge is the exchange of temporal pattern of rainfall and the principal reasons for increase of flood discharge are the increase of rainfall depth by unusual weather phenomena and the difference of estimation method for parameters of unit hydrograph.

A Determination of the Rainfall Durations of Various Recurrence Intervals (재현기간별 설계유효우량의 지속기간결정)

  • 윤용남;전병호
    • Water for future
    • /
    • v.12 no.2
    • /
    • pp.56-62
    • /
    • 1979
  • Many methods of estimating design floods from rainfall data involve a trial and error procedure to determine the duration of the design rainfall, which is very complicated and time-consuming. In this study, an effort was given to derive an analytical expression for estimating the appropriate duration for use with a particular unit hydrograph. According to the so-derived analytical expression the coordinateds of hvdrograph curve and rainfall curve for the Musim Representative Basin were computed and then plotted on a same scal graph paper on which the critical durations of design rainfall excess of various recurrence intervals were determined by the point of intersection of the tow curves.

  • PDF