• Title/Summary/Keyword: excavator simulator

Search Result 19, Processing Time 0.028 seconds

Design of Simulator for the Excavator (굴삭기 시뮬레이터의 설계)

  • Kim, D.S.;Bae, S.K.;Kim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2006
  • Recently, the cylinder of the excavator is applied in the various environment. So, we need the development of the simulator for the excavator. The simulator has the effects of the decrease of the cost and improvement of the cylinder's performance. In this paper, we design the simulator for the excavator and makes an analysis of the dynamics and structure. The simulator was applied to the excavator's models of 10ton, 20ton and 30ton because we built the data base of a real excavator's cylinder of information in the experiment. And we used the FEM analysis for the comparative study on the characteristics.

  • PDF

Development of a PC-based Excavator Simulator for Operator Training (운전자 교육을 위한 PC 기반의 굴삭기 시뮬레이터의 개발)

  • 한경숙;황세훈
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • Vehicle simulators provide an effective and safe environment for training operators. Many vehicle simulators have been developed but only a few have reached the stage of widely available tools; these tools are usually expensive and run on workstations only We have developed a low-cost, PC-based excavator simulator for training operators. Currently the simulator is dedicated to operating the boom, Em, bucket, and driver's cabin for digging by the action of the operator on two joysticks. This paper presents the implementation of the excavator simulator and some implementation results.

  • PDF

Development of a PC based Simulator for Excavator Manipulation using Virtual Reality (PC기반의 가상현실을 이용한 굴삭기 조작 시뮬레이터 개발)

  • Lee, Se-Bok;Kim, In-Shik;Cho, Chang-Hee;Kim, Sung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.536-541
    • /
    • 2000
  • A low cost PC based simulator for excavator manipulation has been developed using virtual reality technology. The simulator consists of two joystick input devices, server and client PCs, an excavator kinematics module, and a graphic rendering program Open Inventor. In order to use two joysticks in the PC window environment multi-thread programing with network protocol TCP/IP has been used. To provide realistic view to the operator, CAD program Pro/Engineer and 3D modeller have been employed to create 3D part geometry of tile manipulator and virtual environmental geometries. Those geometries also have been transformed and imported to the Open Inventor. The Simulator developed is to be improved for more realistic excavator operational training.

  • PDF

Development and Application of Simulator for Hydraulic Excavator (유압 굴삭기용 시뮬레이터 개발 및 응용)

  • Lim, Tae-Hyeong;Yang, Soon-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.142-148
    • /
    • 2006
  • Hydraulic excavators have been popular devices in construction fields because of their multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of opening characteristics and dead zone of main control valve(MCV), oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and their circuits are expressed graphically. Also, parameters and nonlinear characteristics are considered in a text style. From the simulation results, fixed spring stiffness of MCV can not obtain the satisfactory accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing a proportional gain, is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The excavator simulator can be used to forecast the attachment behaviors when components, mechanical attachments and hydraulic circuits change, or other control algorithms are applied. The simulator could be a kind of development platform for new excavators.

Development of Simulator for Hydraulic Excavator (유압 굴삭기 시뮬레이터 개발)

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. The simulator can be used to forecast excavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

Simulator for Hydraulic Excavator

  • Lim, Tae-Hyeong;Lee, Hong-Seon;Yang, Soon-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2071-2075
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. The simulator can be used to forecast excavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

A Study on Analysis of Dynamic Characteristics of Main Control Valve for Hydraulic Excavator using AMESim (AMESim을 이용한 유압 굴삭기용 Main Control Valve의 동특성 해석에 관한 연구)

  • 임태형;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1755-1759
    • /
    • 2003
  • The hydraulic excavator has been a popular research object for automation because of its multi-workings and economic efficiency. The objective of this paper is to design each components and to construct boom, arm, bucket circuit. These models modeled with AMESim show us change of variables and behavior of excavator. Simulation model will be used for simulator of excavator.

  • PDF

Closed loop type MCV(Main Control Valve) for Hydraulic Excavator (유압 굴삭기용 폐루프 타입 MCV(Main Control Valve))

  • Lim T.H.;Lee H.S.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.864-870
    • /
    • 2005
  • Hydraulic excavators have been popular devices in construction field because of its multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of nonlinear opening characteristics and dead zone of main control valve, oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and whole circuit are expressed graphically. Parameters and nonlinear characteristics are inputted in text style. From the simulation results, fixed spring stiffness of MCV can't satisfy accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing proportional gain is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The simulator can be used to forecastexcavator behavior when new components, new mechanical attachments, hydraulic circuit changes, and new control algorithm are applied. The simulator could be a kind of development platform for various new excavators.

  • PDF

Suggestion of Cutoff Frequency in the Washout Filter for a Wheel type Excavator (주행감각 재현을 위한 휠굴삭기용 Washout 필터 설계 및 한계값 추정)

  • Kim, Kwang-Suk;Yoo, Wan-Suk;Lee, Min-Cheol;Son, Kown;Lee, Jang-Myung;Choi, Dae-Hyoung;Park, Min-Gyu;Park, Hyoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.19-28
    • /
    • 1999
  • In this study, a real-time simulation system and a washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. The excavator model consisting of a boom. bucket, upper frame, lower frame and four wheels, has total 11 degrees of freedom. The suggested washout algorithm consists of high and low pass filters with second order. The high pass filters cut off low frequency of the motion cues limited by platform motion. The cut off frequency for the tilt coordination are suggested for a realistic regeneration of excavator motion.

  • PDF