• Title/Summary/Keyword: excavation force

Search Result 162, Processing Time 0.023 seconds

Study on selection and basic specifications design of shield TBM for power cable tunnels (터널식 전력구 쉴드TBM 선정 및 기본설계 사양 제시에 관한 연구)

  • Jung Joo Kim;Ji Yun Lee;Hee Hwan Ryu;Ju Hwan Jung;Suk Jae Lee;Du San Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.201-220
    • /
    • 2023
  • Power cable tunnels is one of the underground structures meant for electricity transmission and are constructed using shield TBM method when transitting across urban and subsea regions. With the increasing shaft depth for tunnels excavation when the shield TBM excavated the rock mass, the review of selecting closed-type shield TBM in rocks becomes necessary. A simplified shield TBM design method is also necessary based on conventional geotechnical survey results. In this respect, design method and related design program are developed based on combined results of full-scale tests, considerable amount of accumulated TBM data, and numerical simulation results. In order to validate the program results, excavation data of a completed power cable tunnel project are utilized. Thrust force, torque, and power of shield TBM specification are validated using Kernel density concept which estimates the population data. The robustness of design expertise is established through this research which will help in stable provision of electricity supply.

Numerical Evaluation of Forces on TBM during Excavation in Mixed Ground Condition by Coupled DEM-FDM (개별요소법 및 유한차분법 연계 모델을 활용한 복합지반 TBM 굴진 시 TBM에 작용하는 힘의 수치해석적 분석)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2021
  • Forces exerted on a shield TBM (tunnel boring machine) such as cutter head torque, thrust force, chamber pressure, and upward force are key factors determining TBM performance. However, the forces acting on the TBM when tunnelling the mixed ground have different tendencies compared to that of the uniform ground, which could impair TBM performance. In this study, the effect of mixed ground tunnelling was numerically investigated with torque, thrust force, chamber pressure, and upward force. A coupled discrete element method (DEM) and finite difference method (FDM) model for TBM driving model was used. This numerical study simulates TBM tunnelling in mixed ground composed of upper weathered granite soil and lower weathered rock. The effect on the force acting on the TBM according to the location and slope of the boundary of the mixed ground was numerically examined.

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

S-I model of horizontal jet grouting reinforcement for soft soil

  • Zhang, Ning;Li, Zhongyin;Ma, Qingsong;Ma, Tianchi;Niu, Xiaodong;Liu, Xixi;Feng, Tao
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1029-1038
    • /
    • 2018
  • A superposition-iteration (S-I) model is proposed to simulate the jet grouting pre-reinforcing impact for a shallow-buried tunnel. The common model is deduced by theoretical (force equilibrium) analysis and then transformed into the numerical formulation. After applying it to an actual engineering problem, the most obvious deficiency was found to be continuous error accumulation, even when the parameters change slightly. In order to address this problem, a superposition-iteration model is developed based on the basic assumption and superposition theory. First, the additional deflection between two successive excavation steps is determined. This is caused by the disappearance of the supporting force in the excavated zone and the soil pressure in the disturbed zone. Consequently, the final deflection can be obtained by repeatedly superposing the additional deflection to the initial deflection in the previous steps. The analytical solution is then determined with the boundary conditions. The superposition-iteration model is thus established. This model was then applied and found to be suitable for real-life engineering applications. During the calculation, the error induced by the ill-conditioned problem of the matrix is easily addressed. The precision of this model is greater compared to previous models. The sensitivity factors and their impact are determined through this superposition-iteration model.

A Study on the Stability of Shield TBM Thrust Jack in the Behavior of Operating Fluid According to Thrust Force (추력에 따른 동작 유체의 거동에 있어 쉴드 TBM 추진잭의 안정성에 대한 연구)

  • Lee, Hyun-seok;Na, Yeong-min;Jang, Hyun-su;Suk, Ik-hyun;Kang, Sin-hyun;Kim, Hun-tae;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • In this paper, the stability of the tunnel boring machine (TBM), used in tunnel excavation, according to the thrust force of the thrust jack was investigated. The existing hydraulic cylinder analysis method is fluid-structure interaction (FSI) analysis, where all of the flow setting and dynamic characteristics should be considered. Therefore, there is a need for a method to solve this problem simply and quickly. To facilitate this, the theoretical pressure in the hydraulic cylinder was calculated and compared with the analytical and experimental results. In the case of the analysis, the pressure generated inside the cylinder was analyzed statically, considering the operating characteristics of the shield TBM, and the stress and pressure were calculated. This method simplifies the analysis environment and shortens the analysis time compared to the existing analysis method. The obtained theoretical and analytical data were compared with the measured data during actual tunneling, and the analysis and experimental data showed a relative error of approximately 23.89%.

A Study on the Characteristics of Member Force, Horizontal Displacement and Concrete Strength by Design Elements of SPW Retaining Walls (SPW 흙막이 벽체의 설계요소별 부재력과 수평변위 및 콘크리트강도 특성 연구)

  • Wan-Ho Kim;Yu-Seok Shin;Yeong-Jin Lee;Yong-Chai Chang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • In areas where excavation works are carried out, it is very important to select a retaining wall method to minimize ground water level and ground subsidence changes. In this regard, the use of Secant Pile Wall(SPW) method, which can complement the disadvantages of the CIP method, is gradually domestic increasing for the construction of retaining wall method. This study investigated the design elements of the SPW method and the interrelationship between the structural stability factors of the wall. The design elements for the retaining method are the overlap length between piles, pile diameter, and the specifications of the H-Beam specifications, while the structural stability factors of the wall are the bending stress, shear stress, horizontal displacement, and concrete strength. The study results showed that the pile diameter and H-Beam specifications have a significant impact on the capacity of the H-Beam, the overlap length and pile diameter have a significant impact on the horizontal displacement, and the pile diameter and H-Beam specifications have a significant impact on the required strength of the concrete.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

Correlation between the EPB shield TBM machine data and the ground condition (EPB Shield TBM 기계데이터와 지반상태의 상관관계 분석)

  • Jung, Sun-Min;Lee, Kang-Hyun;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.543-552
    • /
    • 2014
  • This research covers correlation analysis between the machine data measured from EPB Shield TBM construction site and the ground condition during excavation, and figures out how the machine data are affected by the change of ground conditions through single and mixed parameter analysis. It was found that when the ground is changed from hard rock to soft rock, the ratio of the cutter torque to thrust force increases. The relationship between the ratio of the cutter torque to thrust force and the penetration rate shows that the ratio has a certain range of values for hard rock; on the other hand, it increases for soft rock. It means that we can recognize a sign of appearance of weak zone by assessing the ratio of the cutter touque to thrust force according to each penetration rate. Multiple regression analysis of the machine data showed that the cutter torque increases with the increases of the total thrust force, and it decreases with the increase of the uniaxial compressive strength of the ground.

Lateral Load Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력앵커의 수평재하시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 2004
  • This study is about a horizontal load test of buoyance anchor installed in the section where underground water level happens in the depth of 5m under the ground when the ground is excavated, because the section as a excavation section of high speed railway ${\bigcirc}{\bigcirc}$ station is near a rivers and because the section always has a reservoir of full water level on the left. Therefore, in this study we will appraise the long-term stability of the structure permanently being taken buoyance by the underground water level, through the spot test of the buoyance anchor installed in the section where underground water level happens. For that, Bar Type anchor is used, which can get enough pulling-out force by a method to resist buoyance by using friction force against the ground by high strength steel rod or steel wire. Anti-buoyance anchor is installed on the bottom slab of underground structure being taken horizontal force by the braking and accelerating of high speed train. And, It is aimed to analyze and grasp the review result of stability for the horizontal force that happens at the parking and stopping of high speed train, by executing horizontal load test for the grasping of the movements characteristic of buoyance anchor.

A Study on the Field Application of High Strength Joint Buried Pile Retaining Wall Method (고강도 결합 매입말뚝 흙막이 공법의 현장적용성 검토에 관한 연구)

  • Lee, Gwangnam;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.671-684
    • /
    • 2022
  • This study verified the stability of a high-strength combined buried pile retaining wall and its applicability in the field. A cast-in-place (C.I.P) retaining wall and the high-strength combined embedded pile retaining wall were compared and analyzed numerically. The numerical analysis assessed the ground behavior and stability (and thus field applicability) of a high-strength combined buried pile retaining wall using data measured in the field. The experimental results showed that the cross-sectional force and displacement of the high-strength bonded pile retaining wall were reduced by 13.6~19.7%, the shear force increased by 0.7~4.7%, and the bending moment increased by 4.5~8.8% relative to the values for the C.I.P retaining wall. Examination of the amount of subsidence in the ground around the excavation showed that the maximum settlement of the C.I.P retaining wall was 46.89 mm and that at the high-strength combined buried pile retaining wall was 39.37 mm. Overall, designing a high-strength combined embedded pile retaining wall by applying the maximum bending moment and shear force calculated using the elastic beam method to the site ground was shown to achieve the safety of all members, as member forces were generated within the elastic region.