• Title/Summary/Keyword: exact integration

Search Result 120, Processing Time 0.03 seconds

Exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics

  • Zhang, Xiaosong;Zhang, Xiaoxian
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.279-296
    • /
    • 2008
  • This paper presents an exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary integral equation analysis is given in a closed form. It is proven that using the exact integration for discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two numerical examples are implemented to verify the correctness of the derived exact integration.

EXAMINATION OF SPATIAL INTEGRATION METHOD FOR EXTRACTING THE RCS OF A CALIBRATION TARGET FROM SAR IMAGES

  • Na, Jae-Ho;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • This paper presents an examination of the spatial integration method for extracting the RCS of a trihedral corner reflector from SAR images for SAR external calibration. An exact external radiometric calibration technique is required for extracting an exact calibration constant. Therefore, we examine the accuracy of the spatial integration method, which is commonly used for the SAR external radiometric calibration. At first, an SAR image for a trihedral corner reflector is simulated with a high-resolution SAR impulse response with a known theoretical RCS of the reflector, and a background clutter image for the high resolution SAR system is also generated. Then, a SAR image in a high resolution is generated for a trihedral comer reflector located on a background clutter by superposition of the two SAR images. The radar cross section of a trihedral corner reflector in the SAR image is retrieved by integrating the radar signals of the pixels adjacent to the reflector for various size of the integration area. By comparison of the measured RCS by the integration method and the theoretical RCS of the reflector, the effect of the size of the integration area on the extraction of the calibration constant is examined.

  • PDF

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part I : E-Polarized Plane Wave Incidence (쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, I : E-분극된 평면파 입사시)

  • 하헌태;나정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.21-29
    • /
    • 1998
  • Dual integral equation in the spectral domain is derived for an arbitrary angled perfect conducting wedge with E-polarized plane wave incidence. Analytic integration of the dual integral equation in the spectral domain with the exact boundary fields of the perfect conducting wedge, the well known series solution, gives the exact asymptotic solution. The validity of the integration is assured by showing that analytic integration gives the null fields in the complementary region.

  • PDF

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

A New Block Pulse Operational Matrices Improved by The Second Order Lagrange Interpolation Polynomial (Lagrange 이차 보간 다항식을 이용한 새로운 일반형 블럭 펄스 적분 연산 행렬)

  • 심재선;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.351-358
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices and generalized integration operational matrix by using the Lagrange second order interpolation polynomial.

Integration of Geometrically Exact Shell Finite Element With Trimmed Surface Modeling base on the NURBS (기하학적으로 정확한 셀 유한요소와 NURBS기반의 Trimmed Surface 모델링과의 연동)

  • Choi Jin-Bork;Roh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.794-801
    • /
    • 2006
  • The linkage framework of geometric modeling and analysis based on the NURBS technology is developed in this study. The NURBS surfaces are generated by interpolating the given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which is generated by the commercial CAD systems in the present study. Numerical examples shows the rate of displacement convergence according to the paramterization methods of the NURBS surface. NURBS can generate quadric surfaces in an exact manner. It is the one of the advantages of the NURBS. A trimmed NURBS surface that is often encountered in the modeling process of the CAD systems is also presented in the present study. The performance of the developed geometrically exact shell element integrated with the exact geometric representations by the NURBS equation is compared to those of the previous reported FE shell elements in the selected benchmark problems.

  • PDF

SYMMETRY REDUCTIONS, VARIABLE TRANSFORMATIONS AND EXACT SOLUTIONS TO THE SECOND-ORDER PDES

  • Liu, Hanze;Liu, Lei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.563-572
    • /
    • 2011
  • In this paper, the Lie symmetry analysis is performed on the three mixed second-order PDEs, which arise in fluid dynamics, nonlinear wave theory and plasma physics, etc. The symmetries and similarity reductions of the equations are obtained, and the exact solutions to the equations are investigated by the dynamical system and power series methods. Then, the exact solutions to the general types of PDEs are considered through a variable transformation. At last, the symmetry and integration method is employed for reducing the nonlinear ODEs.

A Block Pulse Operational Matrices by Interpolation Polynomial (보간 다항식을 이용한 일반형 블록펄스 적분연산행렬)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.45-48
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently. it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices.

  • PDF

Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices (새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.