• Title/Summary/Keyword: evolutionary relationship

Search Result 118, Processing Time 0.025 seconds

A System Design of Evolutionary Optimizer for Continuous Improvement of Full-Scale Manufacturing Processes (양산공정의 지속적 품질개선을 위한 Evolutionary Optimizer의 시스템 설계)

  • Rhee, Chang-Kwon;Byun, Jai-Hyun;Do, Nam-Chul
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.465-476
    • /
    • 2005
  • Evolutionary operation is a useful tool for improving full-scale manufacturing process by systematically changing the levels of the process variables without jeopardizing the product. This paper presents a system design for the evolutionary operation software called 'evolutionary optimizer'. Evolutionary optimizer consists of four modules: factorial design, many variables, mixture, and mean/dispersion. Context diagram, data flow diagram and entity-relationship modelling are used to systematically design the evolutionary optimizer system.

Phylogeny, host-parasite relationship and zoogeography

  • Hasegawa, Hideo
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.197-213
    • /
    • 1999
  • Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates.

  • PDF

A symbiotic evolutionary algorithm for the clustering problems with an unknown number of clusters (클러스터 수가 주어지지 않는 클러스터링 문제를 위한 공생 진화알고리즘)

  • Shin, Kyoung-Seok;Kim, Jae-Yun
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.1
    • /
    • pp.98-108
    • /
    • 2011
  • Clustering is an useful method to classify objects into subsets that have some meaning in the context of a particular problem and has been applied in variety of fields, customer relationship management, data mining, pattern recognition, and biotechnology etc. This paper addresses the unknown K clustering problems and presents a new approach based on a coevolutionary algorithm to solve it. Coevolutionary algorithms are known as very efficient tools to solve the integrated optimization problems with high degree of complexity compared to classical ones. The problem considered in this paper can be divided into two sub-problems; finding the number of clusters and classifying the data into these clusters. To apply to coevolutionary algorithm, the framework of algorithm and genetic elements suitable for the sub-problems are proposed. Also, a neighborhood-based evolutionary strategy is employed to maintain the population diversity. To analyze the proposed algorithm, the experiments are performed with various test-bed problems which are grouped into several classes. The experimental results confirm the effectiveness of the proposed algorithm.

EVOLUTIONARY DESIGN OF NO SPIN DIFFERENTIAL MODELS FOR OFF-ROAD VEHICLES USING THE AXIOMATIC APPROACH

  • Pyun, Y.S;Jang, Y.D.;Cho, I.H.;Park, J.H.;Combs, A.;Lee, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.795-801
    • /
    • 2006
  • A No Spin Differential (NSD) design has been improved from evaluation of two NSD models utilizing the axiomatic approach. New design parameters of the second level are developed to satisfy the independence axiom. The design matrices are determined to decouple the relationship between design parameters and process parameters. The values of process parameters are then determined to optimize and improve the NSD design. Consequently a unique and evolutionary NSD design is achieved with the aid of the axiomatic approach.

Expression of CyI Cytoplasmic Actin Genes in Sea Urchin Development

  • Hahn, Jang-Hee;Raff, Rudolf A.
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.474-480
    • /
    • 1996
  • We present a study of evolutionary changes in expression of actin genes among closely related sea urchin species that exhibit different modes of early development. For this purpose, polyclonal antisera raised against peptides from the carboxyl terminus of the HeCyI cytoskeletal actin of Heliocidaris erythrogramma were used. H. erythrogramma is a direct developing sea urchin that proceeds from embryonic to adult stages without an intervening feeding larval stage. Expression patterns of the CyI actin isoform were compared with those of Heliocidaris tuberculata and to a related sea urchin Strongylocentrotus purpuratus, which both produce a feeding pluteus larval stage. The CyI actin of all three species is expressed in the same cell types. However, its expression patterns have been changed with reorganization of early cell lineage differentiation, which is apparent among the three species. Thus. evolutionary changes in CyI actin gene expression patterns are correlated with not only phylogenetic relationship, but developmental mode. The implication of this observation is that evolutionary changes in expression patterns of histospecific genes may underlie the emergence of novel developmental processes.

  • PDF

Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis

  • Nguyen, Thuy Vu An;Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1301-1305
    • /
    • 2009
  • The evolution of living organisms occurs via a combination of highly complicated processes that involve modification of various features such as appearance, metabolism and sensing systems. To understand the evolution of life, it is necessary to understand how each biological feature has been optimized in response to new environmental conditions and interrelated with other features through evolution. To accomplish this, we constructed contents-based trees for a two-component system (TCS) and metabolic network to determine how the environmental communication mechanism and the intracellular metabolism have evolved, respectively. We then conducted a comparative analysis of the two trees using ARACNE to evaluate the evolutionary and functional relationship between TCS and metabolism. The results showed that such integrated analysis can give new insight into the study of bacterial evolution.

The Limit of Gene-Culture Co-evolutionary Theory

  • Lee, Min-seop;Jang, Dayk
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.3
    • /
    • pp.173-191
    • /
    • 2017
  • The theories of cultural evolution hold subtly or clearly different stances about definition of culture, pattern of cultural evolution, biases that affect cultural evolution, and relationship between culture and organism. However, the cultural evolution theories have a common problem to solve: As the evolutionary theory of life tries to explain the early steps and the origin of life, the cultural evolution theories also must explain the early steps of the cultural evolution and the role of the human capability that makes cultural evolution possible. Therefore, explanations of the human's unique traits including the cultural ability are related to determine which one is the most plausible among many cultural evolution theories. Theories that tried to explain human uniqueness commonly depict the coevolution of gene (organism) and culture. We will explicitly call the niche construction theory and the dual inheritance theory the 'gene-culture co-evolutionary theory'. In these theories, the most important concept is the 'concept of positive feedback'. In this paper, we distinguish between core positive feedback and marginal positive feedback, according to whether the trait that the concept of positive feedback explains is the trait of human uniqueness. Both types of positive feedback effectively explain the generality of human uniqueness and the diversity of human traits driven by cultural groups. However, this positive feedback requires an end, in contrast to negative feedback which can be continued in order to maintain homeostasis. We argue that the co-evolutionary process in the gene-culture co-evolutionary theories include only the positive feedback, not covering the cultural evolution after the positive feedback. This thesis strives to define the coevolution concept more comprehensively by suggesting the potential relationships between gene and culture after the positive feedback.

Molecular Characterization of Chicken Toll-like Receptor 7

  • Chai, Han-Ha;Suk, Jae Eun;Lim, Dajeong;Lee, Kyung-Tai;Choe, Changyong;Cho, Yong-Min
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.105-115
    • /
    • 2015
  • Toll-like receptor 7 (TLR7) is critical for the triggering of innate immune response by recognizing the conserved molecular patterns of single-stranded RNA (ssRNA) viruses and mediated antigenic adaptive immunity. To understand how TLR7 distinguish pathogen-derived molecular patterns from the host self, it is essential to be able to identify TLR7 receptor interaction interfaces, such as active sites or R848-agonist binding sites. The functional interfaces of TLR7 can serve as targets for structure-based drug design in studying the TLR7 receptor's structure-function relationship. In contrast to mammalian TLR7, chicken TLR7 (chTLR7) is unknown for its important biological function. Therefore, it has been targeted to mediate contrasting evolutionary patterns of positive selection into non-synonymous SNPs across eleven species using TLR7 conservation patterns (evolutionary conserved and class-specific trace residues), where protein sequence differences to the TLR7 receptors of interest record mutation that have passed positive section across the species. In this study, we characterized the Lys609 residue on chTLR7-ECD homodimer interfaces to reflect the current tendency of evolving positive selection to be transfer into a stabilization direction of the R848-agonist/chTLR7-ECDs complex under the phylogenetically variable position across species and we suggest a potential indicator for contrasting evolutionary patterns of both the species TLR-ECDs.

NUMBER OF CYCLES IN EVOLUTIONARY OPERATION

  • Lim, Yong-B.;Park, Sung-H.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.201-208
    • /
    • 2007
  • Evolutionary operation (EVOP) proposed by Box (1957) is a method for continuous monitoring and improvement of a full-scale manufacturing process with the objective of moving the operating conditions toward the better ones. EVOP consists of systematically making small changes in the levels of the two or three process variables under consideration. Data are collected on the response variable at each point of two level factorial design with the center point and a cycle is said to have been completed. The cycles are replicated sequentially until the decision is made on whether further cycle of experiments is needed to conclude the significance of any of main effects or interaction effects or the curvature. In this paper, an improved flow chart of EVOP is proposed and how to determine the number of cycles is studied based on the size of type II error. In order to reject the alternative hypothesis of interests with more confidence and conclude that we believe in the null hypothesis of no effects, we propose a counter measure $p^*-value$ corresponding to the p-value. The relationship of $p^*-value$ to the probability of type II error ${\beta}$ under the alternative hypothesis of interests is analogous to that of p-value to the probability of type I error ${\alpha}$. Also the implementation of EVOP with a mixture experiment is discussed.

Genomic and evolutionary analysis with gluten proteins of major food crops in the Triticeae tribe

  • Kim, Sang Heon;Seo, Yong Weon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.86-86
    • /
    • 2017
  • Prolamins are the main seed storage proteins in cereals. Gluten proteins seem to be prolamins because their primary structure have the meaningful quantity of proline and glutamine amino acid residues. Gluten proteins are found in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale) which are major food crops in the Triticeae tribe. Glutenin and gliadin, hordein, and secalin are typical gluten proteins found in wheat, barley, and rye, respectively. Gluten affect grain quality so that many researches, such as isolation or characterization of their genes, have been carried out. To improve the quality of grains in the Triticeae tribe, it is necessary to understand the relationship within their gluten proteins and their evolutionary changes. The sequences of nucleotides and amino acids of gluten protein including glutenins, gliadins, hordeins, and secalins were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) and Uniprot (http://www.uniprot.org/). The sequence analysis and the phylogenetic analysis of gluten proteins were performed with various website tools. The results demonstrated that gluten proteins were grouped with their homology and were mostly corresponded with the previous reports. However, some genes were moved, duplicated, or disappeared as evolutionary process. The obtained data will encourage the breeding programs of wheat, barley, rye, and other crops in the Triticeae tribe.

  • PDF