• Title/Summary/Keyword: evolutionary neural networks

Search Result 85, Processing Time 0.027 seconds

Evolving Neural Network for Realtime Learning Control (실시간 학습 제어를 위한 진화신경망)

  • 손호영;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.531-531
    • /
    • 2000
  • The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.

  • PDF

Effective Intrusion Detection using Evolutionary Neural Networks (진화신경망을 이용한 효과적 인 침입탐지)

  • Han Sang-Jun;Cho Sung-Bae
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.301-309
    • /
    • 2005
  • Learning program's behavior using machine learning techniques based on system call audit data is an effective intrusion detection method. Rule teaming, neural network, statistical technique, and hidden Markov model are representative methods for intrusion detection. Among them neural networks are known for its good performance in teaming system call sequences. In order to apply it to real world problems successfully, it is important to determine their structure. However, finding appropriate structure requires very long time because there are no formal solutions for determining the structure of networks. In this paper, a novel intrusion detection technique using evolutionary neural networks is proposed. Evolutionary neural networks have the advantage that superior neural networks can be obtained in shorter time than the conventional neural networks because it leams the structure and weights of neural network simultaneously Experimental results against 1999 DARPA IDEVAL data confirm that evolutionary neural networks are effective for intrusion detection.

Accelerated Co-evolutionary Algorithms

  • Kim, Jong-Han;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • A new co-evolutionary algorithm, of which the convergence speed is accelerated by neural networks, is proposed and verified in this paper. To reduce computational load required for co-evolutionary optimization processes, the cost function and constraint information is stored in the neural networks, and the extra offspring group, whose cost is computed by the neural networks, is generated. It increases the offspring population size without overloading computational effort; therefore, the convergence speed is accelerated. The proposed algorithm is applied to attitude control design of flexible satellites, and it is verified by computer simulations and experiments using a torque-free air bearing system.

Evolutionary Learning of Neural Networks Classifiers for Credit Card Fraud Detection (신용카드 사기 검출을 위한 신경망 분류기의 진화 학습)

  • 박래정
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.400-405
    • /
    • 2001
  • This paper addresses an effective approach of training neural networks classifiers for credit card fraud detection. The proposed approach uses evolutionary programming to trails the neural networks classifiers based on maximization of the detection rate of fraudulent usages on some ranges of the rejection rate, loot minimization of mean square error(MSE) that Is a common criterion for neural networks learning. This approach enables us to get classifier of satisfactory performance and to offer a directive method of handling various conditions and performance measures that are required for real fraud detection applications in the classifier training step. The experimental results on "real"credit card transaction data indicate that the proposed classifiers produces classifiers of high quality in terms of a relative profit as well as detection rate and efficiency.

  • PDF

Evolutionary designing neural networks structures using genetic algorithm

  • Itou, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.2-43
    • /
    • 2001
  • In this paper, we consider the problems of the evolutionary designed neural networks structures by genetic algorithm. Neural networks has been applied to various application fields since back-propagation algorithm was proposed, e.g. function approximation, pattern or character recognition and so on. However, one of difficulties to use the neural networks. It is how to design the structure of the neural network. Researchers and users design networks structures and training parameters such as learning rate and momentum rate and so on, by trial and error based on their experiences. In the case of designing large scales neural networks, it is very hard work for manually design by try and error. For this difficulty, various structural learning algorithms have been proposed. Especially, the technique of using genetic algorithm for networks structures design has been ...

  • PDF

A Co-Evolutionary Approach for Learning and Structure Search of Neural Networks (공진화에 의한 신경회로망의 구조탐색 및 학습)

  • 이동욱;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.111-114
    • /
    • 1997
  • Usually, Evolutionary Algorithms are considered more efficient for optimal system design, However, the performance of the system is determined by fitness function and system environment. In this paper, in order to overcome the limitation of the performance by this factor, we propose a co-evolutionary method that two populations constantly interact and coevolve. In this paper, we apply coevolution to neural network's evolving. So, one population is composed of the structure of neural networks and other population is composed of training patterns. The structure of neural networks evolve to optimal structure and, at the same time, training patterns coevolve to feature patterns. This method prevent the system from the limitation of the performance by random design of neural network structure and inadequate selection of training patterns. In this time neural networks are trained by evolution strategies that are able to apply to the unsupervised learning. And in the coding of neural networks, we propose the method to maintain nonredundancy and character preservingness that are essential factor of genetic coding. We show the validity and the effectiveness of the proposed scheme by applying it to the visual servoing of RV-M2 robot manipulators.

  • PDF

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화: 진화론적 방법)

  • Kim Dong-Won;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.7
    • /
    • pp.424-433
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Optimization of Polynomial Neural Networks: An Evolutionary Approach (다항식 뉴럴 네트워크의 최적화 : 진화론적 방법)

  • Kim, Dong Won;Park, Gwi Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.424-424
    • /
    • 2003
  • Evolutionary design related to the optimal design of Polynomial Neural Networks (PNNs) structure for model identification of complex and nonlinear system is studied in this paper. The PNN structure is consisted of layers and nodes like conventional neural networks but is not fixed and can be changable according to the system environments. three types of polynomials such as linear, quadratic, and modified quadratic is used in each node that is connected with various kinds of multi-variable inputs. Inputs and order of polynomials in each node are very important element for the performance of model. In most cases these factors are decided by the background information and trial and error of designer. For the high reliability and good performance of the PNN, the factors must be decided according to a logical and systematic way. In the paper evolutionary algorithm is applied to choose the optimal input variables and order. Evolutionary (genetic) algorithm is a random search optimization technique. The evolved PNN with optimally chosen input variables and order is not fixed in advance but becomes fully optimized automatically during the identification process. Gas furnace and pH neutralization processes are used in conventional PNN version are modeled. It shows that the designed PNN architecture with evolutionary structure optimization can produce the model with higher accuracy than previous PNN and other works.

Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks (동적 상태 진화 신경망에 기반한 팀 에이전트의 진화)

  • Jin, Xiang-Hua;Jang, Dong-Heon;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.290-299
    • /
    • 2009
  • Evolutionary Artificial Neural Networks (EANNs) has been highly effective in Artificial Intelligence (AI) and in training NPCs in video games. When EANNs is applied to design game NPCs' smart AI which can make the game more interesting, there always comes two important problems: the more complex situation NPCs are in, the more complex structure of neural networks needed which leads to large operation cost. In this paper, the Dynamic State Evolutionary Neural Networks (DSENNs) is proposed based on EANNs which deletes or fixes the connection of the neurons to reduce the operation cost in evolution and evaluation process. Darwin Platform is chosen as our test bed to show its efficiency: Darwin offers the competitive team game playing behaviors by teams of virtual football game players.

  • PDF

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF