• Title/Summary/Keyword: evolutionary neural network

Search Result 96, Processing Time 0.021 seconds

Genetically Optimized Self-Organizing Fuzzy Polynomial Neural Networks based on Information Granulation and Evolutionary Algorithm

  • Park Ho-Sung;Oh Sung-Kwun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.297-300
    • /
    • 2005
  • In this study, we proposed genetically optimized self-organizing fuzzy polynomial neural network based on information granulation and evolutionary algorithm (gdSOFPNN), develop a comprehensive design methodology involving mechanisms of genetic optimization. The proposed gdSOFPNN gives rise to a structural Iy and parametrically optimized network through an optimal parameters design available within FPN (viz. the number of input variables, the order of the polynomial, input variables, the number of membership functions, and the apexes of membership function). Here, with the aid of the information granulation, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. The performance of the proposed gdSOFPNN is quantified through experimentation that exploits standard data already used in fuzzy modeling.

  • PDF

Evolutionary Computation Based CNN Filter Reduction (진화연산 기반 CNN 필터 축소)

  • Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1665-1670
    • /
    • 2018
  • A convolutional neural network (CNN), which is one of the deep learning models, has been very successful in a variety of computer vision tasks. Filters of a CNN are automatically generated, however, they can be further optimized since there exist the possibility of existing redundant and less important features. Therefore, the aim of this paper is a filter reduction to accelerate and compress CNN models. Evolutionary algorithms is adopted to remove the unnecessary filters in order to minimize the parameters of CNN networks while maintaining a good performance of classification. We demonstrate the proposed filter reduction methods performing experiments on CIFAR10 data based on the classification performance. The comparison for three approaches is analysed and the outlook for the potential next steps is suggested.

Pacman Game Reinforcement Learning Using Artificial Neural-network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 팩맨 게임 강화학습)

  • Park, Jin-Soo;Lee, Ho-Jeong;Hwang, Doo-Yeon;Cho, Soosun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.261-268
    • /
    • 2020
  • Genetic algorithms find the optimal solution by mimicking the evolution of natural organisms. In this study, the genetic algorithm was used to enable Pac-Man's reinforcement learning, and a simulator to observe the evolutionary process was implemented. The purpose of this paper is to reinforce the learning of the Pacman AI of the simulator, and utilize genetic algorithm and artificial neural network as the method. In particular, by building a low-power artificial neural network and applying it to a genetic algorithm, it was intended to increase the possibility of implementation in a low-power embedded system.

Evolution of Neural Network's Structure and Learn Patterns Based on Competitive Co-Evolutionary Method (경쟁적 공진화법에 의한 신경망의 구조와 학습패턴의 진화)

  • Joung, Chi-Sun;Lee, Dong-Wook;Jun, Hyo-Byung;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.29-37
    • /
    • 1999
  • In general, the information processing capability of a neural network is determined by its architecture and efficient training patterns. However, there is no systematic method for designing neural network and selecting effective training patterns. Evolutionary Algorithms(EAs) are referred to as the methods of population-based optimization. Therefore, EAs are considered as very efficient methods of optimal system design because they can provide much opportunity for obtaining the global optimal solution. In this paper, we propose a new method for finding the optimal structure of neural networks based on competitive co-evolution, which has two different populations. Each population is called the primary population and the secondary population respectively. The former is composed of the architecture of neural network and the latter is composed of training patterns. These two populations co-evolve competitively each other, that is, the training patterns will evolve to become more difficult for learning of neural networks and the architecture of neural networks will evolve to learn this patterns. This method prevents the system from the limitation of the performance by random design of neural networks and inadequate selection of training patterns. In co-evolutionary method, it is difficult to monitor the progress of co-evolution because the fitness of individuals varies dynamically. So, we also introduce the measurement method. The validity and effectiveness of the proposed method are inspected by applying it to the visual servoing of robot manipulators.

  • PDF

A Study on Trajectory Control of Robot Manipulator using Neural Network and Evolutionary Algorithm (신경망과 진화 알고리즘을 이용한 로봇 매니퓰레이터의 궤적 제어에 관한 연구)

  • Kim, Hae-Jin;Lim, Jung-Eun;Lee, Young-Seok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1960-1961
    • /
    • 2006
  • In this paper, The trajectory control of robot manipulator is proposed. It divides by trajectory planning and tracking control. A trajectory planning and tracking control of robot manipulator is used to the neural network and evolutionary algorithm. The trajectory planning provides not only the optimal trajectory for a given cost function through evolutionary algorithm but also the configurations of the robot manipulator along the trajectory by considering the robot dynamics. The computed torque method (C.T.M) using the model of the robot manipulators is an effective means for trajectory tracking control. However, the tracking performance of this method is severely affected by the uncertainties of robot manipulators. The Radial Basis Function Networks(RBFN) is used not to learn the inverse dynamic model but to compensate the uncertainties of robot manipulator. The computer simulations show the effectiveness of the proposed method.

  • PDF

Evolving Neural Network for Stabilization Control of Inverted Pendulum (진화 신경회로망을 이용한 도립진자 시스템의 안정화)

  • Shim, Young-Jin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.963-965
    • /
    • 1999
  • A linear chromosome combined with a grid-based representation of the network and a new crossover operator allow the evolution of the architecture and the weights simultaneously. In our approach there is no need for a separate weight optimization procedure and networks with more than one type of activation function can be evolved. In this paper one evolutionary' strategy of a given dual neural controller was introduced and the simulation results were described in detail through applications to a stabilization control of an Inverted Pendulum System.

  • PDF

Performance Improvement of Ensemble Speciated Neural Networks using Kullback-Leibler Entropy (Kullback-Leibler 엔트로피를 이용한 종분화 신경망 결합의 성능향상)

  • Kim, Kyung-Joong;Cho, Sung-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.4
    • /
    • pp.152-159
    • /
    • 2002
  • Fitness sharing that shares fitness if calculated distance between individuals is smaller than sharing radius is one of the representative speciation methods and can complement evolutionary algorithm which converges one solution. Recently, there are many researches on designing neural network architecture using evolutionary algorithm but most of them use only the fittest solution in the last generation. In this paper, we elaborate generating diverse neural networks using fitness sharing and combing them to compute outputs then, propose calculating distance between individuals using modified Kullback-Leibler entropy for improvement of fitness sharing performance. In the experiment of Australian credit card assessment, breast cancer, and diabetes in UCI database, proposed method performs better than not only simple average output or Pearson Correlation but also previous published methods.

Visual Servoing of Robot Manipulators using Pruned Recurrent Neural Networks (저차원화된 리커런트 뉴럴 네트워크를 이용한 비주얼 서보잉)

  • 김대준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.259-262
    • /
    • 1997
  • This paper presents a visual servoing of RV-M2 robot manipulators to track and grasp moving object, using pruned dynamic recurrent neural networks(DRNN). The object is stationary in the robot work space and the robot is tracking and grasping the object by using CCD camera mounted on the end-effector. In order to optimize the structure of DRNN, we decide the node whether delete or add, by mutation probability, first in case of delete node, the node which have minimum sum of input weight is actually deleted, and then in case of add node, the weight is connected according to the number of case which added node can reach the other nodes. Using evolutionary programming(EP) that search the struture and weight of the DRNN, and evolution strategies(ES) which train the weight of neuron, we pruned the net structure of DRNN. We applied the DRNN to the Visual Servoing of a robot manipulators to control position and orientation of end-effector, and the validity and effectiveness of the pro osed control scheme will be verified by computer simulations.

  • PDF

Behavior Control of Autonomous Mobile Robots using ECANS1 (진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어)

  • Lee, Dong-Wook;Chung, Young-June;Sim, Kwee-Bo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

A study on the structure evolution of neural networks using genetic algorithms (유전자 알고리즘을 이용한 신경회로망의 구조 진화에 관한 연구)

  • 김대준;이상환;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.223-226
    • /
    • 1997
  • Usually, the Evolutionary Algorithms(EAs) are considered more efficient for optimal, system design because EAs can provide higher opportunity for obtaining the global optimal solution. This paper presents a mechanism of co-evolution consists of the two genetic algorithms(GAs). This mechanism includes host populations and parasite populations. These two populations are closely related to each other, and the parasite populations plays an important role of searching for useful schema in host populations. Host population represented by feedforward neural network and the result of co-evolution we will find the optimal structure of the neural network. We used the genetic algorithm that search the structure of the feedforward neural network, and evolution strategies which train the weight of neuron, and optimize the net structure. The validity and effectiveness of the proposed method is exemplified on the stabilization and position control of the inverted-pendulum system.

  • PDF