• Title/Summary/Keyword: evolution — galaxies

Search Result 443, Processing Time 0.019 seconds

PAGAN II: THE EVOLUTION OF AGN JETS ON SUB-PARSEC SCALES

  • OH, JUNGHWAN;TRIPPE, SASCHA;KANG, SINCHEOL;KIM, JAE-YOUNG;PARK, JONG-HO;LEE, TAESEOK;KIM, DAEWON;KINO, MOTOKI;LEE, SANG-SUNG;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.299-311
    • /
    • 2015
  • We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the uv coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations – flat core and steep jets – while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about 5c. This constrains the lower limits of the intrinsic component velocities to ~ 0.98c and the upper limits of the angle between jet and line of sight to ~20°. In agreement with global jet expansion, jet components show systematically larger diameters d at larger core distances r, following the global relation d ≈ 0.2r, albeit within substantial scatter.

Formation and evolution of sub-galactic structures around dwarf galaxy-sized halos

  • Chun, Kyungwon;Shin, Jihye;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.39.4-40
    • /
    • 2016
  • We aim to investigate formation of satellite sub-galactic structures around isolated dwarf galaxies using cosmological hydrodynamic zoom simulations. For this, we modify a cosmological hydrodynamic code, GADGET-3, in a way that includes gas cooling down to T~10K, gas heating by universal reionization when z < 8.9, UV shielding for high density regions of $n_{shield}$ > $0.014cm^{-3}$, star formation in the dense regions ($n_H$ > $100cm^{-3}$), and supernova feedback. To get good statistics, we perform three different simulations for different target galaxies of the same mass of ${\sim}10^{10}M_{sun}$. Each simulation starts in a cubic box of a side length of 1Mpc/h with 17 million particles from z = 49. The mass of dark matter (DM) and gas particle is $M_{DM}=4.1{\times}10^3M_{sun}$ and $M_{gas}=7.9{\times}10^2M_{sun}$, respectively, thus each satellite sub-galactic structure can be resolved with more than hundreds or thousands particles. We analyze total 90 sub-galactic structures that have formed outside of the main halos but infall the main halos. We found that 1) mini halos that interact more with the other mini halos tend to accrete the more mass, 2) mini halos that interact more before the reionization tend to form more stars, 3) mini halos with the more interaction tend to approach closer to the galactic center and have the lower orbital circularity, 4) survivals even in the strong tidal fields evolve baryon dominated system, such as globular clusters.

  • PDF

STARBURST AND AGN CONNECTIONS AND MODELS

  • SCOVILLE NICK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.167-175
    • /
    • 2003
  • There is accumulating evidence for a strong link between nuclear starbursts and AGN. Molecular gas in the central regions of galaxies plays a critical role in fueling nuclear starburst activity and feeding central AGN. The dense molecular ISM is accreted to the nuclear regions by stellar bars and galactic interactions. Here we describe recent observational results for the OB star forming regions in M51 and the nuclear star burst in Arp 220 - both of which have approximately the same rate of star formation per unit mass of ISM. We suggest that the maximum efficiency for forming young stars is an Eddington-like limit imposed by the radiation pressure of newly formed stars acting on the interstellar dust. This limit corresponds to approximately 500 $L_{\bigodot} / M_{\bigodot}$ for optically thick regions in which the radiation has been degraded to the NIR. Interestingly, we note that some of the same considerations can be important in AGN where the source of fuel is provided by stellar evolution mass-loss or ISM accretion. Most of the stellar mass-loss occurs from evolving red giant stars and whether their mass-loss can be accreted to a central AGN or not depends on the radiative opacity of the mass-loss material. The latter depends on whether the dust survives or is sublimated (due to radiative heating). This, in turn, is determined by the AGN luminosity and the distance of the mass-loss stars from the AGN. Several AGN phenomena such as the broad emission and absorption lines may arise in this stellar mass-loss material. The same radiation pressure limit to the accretion may arise if the AGN fuel is from the ISM since the ISM dust-to-gas ratio is the same as that of stellar mass-loss.

APPLICATIONS OF THE HILBERT-HUANG TRANSFORM ON THE NON-STATIONARY ASTRONOMICAL TIME SERIES

  • HU, CHIN-PING;CHOU, YI;YANG, TING-CHANG;SU, YI-HAO;HSIEH, HUNG-EN;LIN, CHING-PING;CHUANG, PO-SHENG;LIAO, NAI-HUI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.605-607
    • /
    • 2015
  • The development of time-frequency analysis techniques allow astronomers to successfully deal with the non-stationary time series that originate from unstable physical mechanisms. We applied a recently developed time-frequency analysis method, the Hilbert-Huang transform (HHT), to two non-stationary phenomena: the superorbital modulation in the high-mass X-ray binary SMC X-1 and the quasi-periodic oscillation (QPO) of the AGN RE J1034+396. From the analysis of SMC X-1, we obtained a Hilbert spectrum that shows more detailed information in both the time and frequency domains. Then, a phase-resolved analysis of both the spectra and the orbital profiles was presented. From the spectral analysis, we noticed that the iron line production is dominated by different regions of this binary system in different superorbital phases. Furthermore, a pre-eclipse dip lying at orbital phase ~0:6-0:85 was discovered during the superorbital transition state. We further applied the HHT to analyze the QPO of RE J1034+396. From the Hilbert spectrum and the O-C analysis results, we suggest that it is better to divide the evolution of the QPO into three epochs according to their different periodicities. The correlations between the QPO periods and corresponding fluxes were also different in these three epochs. The change in periodicity and the relationships could be interpreted as the change in oscillation mode based on the diskoseismology model.

PROPERTIES OF THE SCUBA-2 850㎛ SOURCES IN THE XMM-LSS FIELD

  • Seo, Hyunjong;Jeong, Woong-Seob;Kim, Seong Jin;Pyo, Jeonghyun;Kim, Min Gyu;Ko, Jongwan;Kim, Minjin;Kim, Sam
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.1
    • /
    • pp.7-20
    • /
    • 2017
  • We carry out the study of $850{\mu}m$ sources in a part of the XMM-LSS field. The $850{\mu}m$ imaging data were obtained by the SCUBA-2 on the James Clerk Maxwell Telescope (JCMT) for three days in July 2015 with an integration time of 6.1 hours, covering a circular area with a radius of 15'. We choose the central area up to a radius of 9'.15 for the study, where the noise distribution is relatively uniform. The root mean square (rms) noise at the center is 2.7 mJy. We identify 17 sources with S/N > 3.5. Differential number count is estimated in flux range between 3.5 and 9.0 mJy after applying various corrections derived by imaging simulations, which is consistent with previous studies. For detailed study on the individual sources, we select three sources with more reliable measurements (S/N > 4.5), and construct their spectral energy distributions (SEDs) from optical to far-infrared band. Redshift distribution of the sources ranges from 0.36 to 3.28, and their physical parameters are extracted using MAGPHYS model, which yield infrared luminosity $L_{IR}=10^{11.3}-10^{13.4}L_{\odot}$, star formation rate $SFR=10^{1.3}-10^{3.2}M_{\odot}yr^{-1}$ and dust temperature $T_D=30-53K$. We investigate the correlation between $L_{IR}$ and $T_D$, which appears to be consistent with previous studies.

Probing the Feedback Process in Local Type-2 AGNs with Integral-Field Spectroscopy

  • Luo, Rongxin;Woo, Jong-Hak;Shin, Jaejin;Kang, Daeun;Bae, Hyun-Jin;Karouzos, Marios
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.36.3-36.3
    • /
    • 2019
  • Feedback process is one of the most important topics in the study of AGNs since it plays a key role in linking the SMBHs and their host galaxies. In order to further understand the co-evolution of SMBHs and their host galaxies, we probe the feedback process in local type-2 AGNs with a series of integral-field-spectroscopy observations. In the first part of my talk, I will introduce our GMOS observations of luminous type-2 AGNs at z < 0.1, which are selected using the integrated [O III] kinematics. Based on the dedicated emission-line diagnostics and kinematic studies, we identify the signatures of AGN-driven outflows and quantify the outflow size in the targets with extreme [O III] kinematics. For the targets without extreme [O III] kinematics, we find the presence of weak AGN-driven outflows, which are indicated by the significant differences between the kinematics of gas and stars. Then, I will present our recent study of 40 type-2 AGNs based on the SNIFS IFU. By comparing the radial profile of velocity dispersion of gas and stars, we measure the size of AGN-driven outflows in these targets and extend the outflow size-AGN luminosity relation in our previous GMOS studies. We also discuss the feedback effect of AGN-driven outflows by connecting the outflow velocity and host galaxy properties. These results highlight the importance of spatially-resolved observation in investigating gas kinematics and identifying the signatures of AGN-driven outflows.

  • PDF

On the origin of the thick discs of spiral galaxies from high-resolution cosmological simulations

  • Yi, Sukyoung K.;Park, Min-Jung;Peirani, Sebastien;Pichon, Christophe;Dubois, Yohan;Choi, Hoseung;Devriendt, Julien;Kimm, Taysun;Kaviraj, Sugata;Kraljic, Katarina;Volonteri, Marta
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.37.3-38
    • /
    • 2020
  • Ever since thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than 10^10 solar mass in recent cosmological high-resolution (>34 pc) zoom-in simulations: Galactica and New Horizon. The thin and thick disks are reproduced by the simulations with scale heights and luminosity ratios that are in reasonable agreement with observations. When we spatially classify the disk stars into thin and thick disks by their heights from the galactic plane, the "thick" disk stars are older, less metal-rich, kinematically hotter, and higher in accreted star fraction than the "thin" disk counterparts. However, we found that the the thick disk stars were spatially and kinematically thinner when they were born. Indeed, a large fraction of thick disk stars was born near the galactic plane at earlier times and get heated with time, eventually occupying high altitudes and exhibiting different population properties compared to the thin-disk stars. In conclusion, from our simulations, the thin and thick disk components are not entirely distinct at birth, but rather a result of the time evolution of the stars born in the main disk of the galaxy. (excerpted from the abstract of the upcoming paper submitted to Astrophysical Journal: Park, M.-J., Yi, S.K. et al. 2020)

  • PDF

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

THE MILLIMETER-RADIO EMISSION OF BL LACERTAE DURING TWO γ-RAY OUTBURSTS

  • Kim, Dae-Won;Trippe, Sascha;Lee, Sang-Sung;Park, Jong-Ho;Kim, Jae-Young;Algaba, Juan-Carlos;Hodgson, Jeffrey A.;Kino, Motoki;Zhao, Guang-Yao;Wajima, Kiyoaki;Kang, Sincheol;Oh, Junghwan;Lee, Taeseok;Byun, Do-Young;Kim, Soon-Wook;Kim, Jeong-Sook
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.167-178
    • /
    • 2017
  • We present a study of the inexplicit connection between radio jet activity and ${\gamma}$-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two ${\gamma}$-ray outbursts (in November 2013 and March 2015) can be seen in ${\gamma}$-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of $411{\pm}85$ days, $352{\pm}79$ days, $310{\pm}57$ days, and $283{\pm}55$ days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths $B{\sim}2{\mu}T$ and electron Lorentz factors ${\gamma}$ ~ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale ${\tau}$ scales with frequency ${\nu}$ like ${\tau}{\propto}{\nu}^{-0.2}$. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the ${\gamma}$-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second ${\gamma}$-ray event indicate that this ${\gamma}$-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.

Extragalactic Sciences from SPICA/FPC-S

  • Jeong, Woong-Seob;Matsumoto, Toshio;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Tsumura, Kohji;Tanaka, Masayuki;Shimonishi, Takashi;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Park, Kwijong;Park, Youngsik;Han, Wonyong;Nam, Ukwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2013
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. The focal plane instruments onboard SPICA will enable us to resolve many astronomical key issues from the formation and evolution of galaxies to the planetary formation. The FPC-S (Focal Plane Camera - Sciecne) is a near-infrared instrument proposed by Korea as an international collaboration. Owing to the capability of both low-resolution imaging spectroscopy and wide-band imaging with a field of view of $5^{\prime}{\times}5^{\prime}$, it has large throughput as well as high sensitivity for diffuse light compared with JWST. In order to strengthen advantages of the FPC-S, we propose the studies of probing population III stars by the measurement of cosmic near-infrared background radiation and the star formation history at high redshift by the discoveries of active star-forming galaxies. In addition to the major scientific targets, to survey large area opens a new parameter space to investigate the deep Universe. The good survey capability in the parallel imaging mode allows us to study the rare, bright objects such as quasars, bright star-forming galaxies in the early Universe as a way to understand the formation of the first objects in the Universe, and ultra-cool brown dwarfs. Observations in the warm mission will give us a unique chance to detect high-z supernovae, ices in young stellar objects (YSOs) even with low mass, the $3.3{\mu}$ feature of shocked circumstance in supernova remnants. Here, we report the current status of SPICA/FPC project and its extragalactic sciences.

  • PDF