• 제목/요약/키워드: evolution — galaxies

검색결과 443건 처리시간 0.024초

The Evolution of the Mass-Metallicity Relation at 0.20 < z < 0.35

  • Chung, Jiwon;Rey, Soo-Chang;Sung, Eon-Chang
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.59-67
    • /
    • 2013
  • We present a spectroscopic study of 343 blue compact galaxies (BCGs) at 0.20 < z < 0.35 from the Sloan Digital Sky Survey (SDSS) DR7 data. We derive gas phase oxygen abundance using the empirical and direct method. Stellar masses of galaxies are derived from the STARLIGHT code. We also derive star formation rates of galaxies based on $H{\alpha}$ emission line from the SDSS as well as far-ultraviolet (FUV) flux from the Galaxy Evolution Explorer GR6 data. Evolution of the luminosity-metallicity and mass-metallicity (M-Z) relations with redshift is observed. At a given luminosity and mass, galaxies at higher redshifts appear to be biased to low metallicities relative to the lower redshift counterparts. Furthermore, low mass galaxies show higher specific star formation rates (SSFRs) than more massive ones and galaxies at higher redshifts are biased to higher SSFRs compared to the lower redshift sample. By visual inspection of the SDSS images, we classify galaxy morphology into disturbed or undisturbed. In the M-Z relation, we find a hint that morphologically disturbed BCGs appear to exhibit low metallicities and high SSFRs compared to undisturbed counterparts. We suggest that our results support downsizing galaxy formation scenario and star formation histories of BCGs are closely related with their morphologies.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

PHOTOMETRIC EVOLUTION OF GALAXIES: STAR FORMATION RATE AND HUBBLE SEQUENCE

  • Ann, Hong-Bae;Lee, Chang-Won;Lee, See-Woo
    • 천문학회지
    • /
    • 제24권1호
    • /
    • pp.13-24
    • /
    • 1991
  • We construct a simple photometric evolution model of galaxies based on the evolutionary population synthesis. In our models an exponentially decreasing SFR with a power law IMF is used to compute the UBV colors of galaxies from ellipticals to late type spirals. It is shown that the integrated colors of galaxies with different Hubble type can be explained by one parameter, SFR.

  • PDF

HI Gas, as Important Driver of Galaxy Evolution

  • 정애리
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • HI gas disks are known to be the largest ISM reservoir in most late type galaxies. When the HI properties of galaxies such as total mass, density, and distribution change, the galaxies may evolve quite differently. In this talk, I will present two groups of galaxies, one undergoing HI stripping and one accreting more gas. I will discuss causes of gas stripping and accretion, and possible consequences in galaxy evolution.

  • PDF

A Comparative Study on Star Formation of Barred and Unbarred Disk Galaxies from SDSS-IV MaNGA IFU survey

  • 지웅배;윤석진
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.77.2-77.2
    • /
    • 2017
  • We investigate star formation activities of ~400 barred and unbarred faced-on late-type galaxies from the SDSS-IV MaNGA (Mapping Nearby Galaxies at APO) IFU survey. We find the star formation activities in gas-poor, barred galaxies are considerably suppressed than gas-rich, barred galaxies, while there is no difference among unbarred galaxies regardless of their HI gas content. The gas-poor and barred galaxies show the steeper difference of gradient in metallicity and age with respect to the stellar mass than gas-rich or unbarred galaxies, in that their centre is more metal-rich and younger. The results suggest that, combined with the gas contents available, the bar structure plays a significant role in quenching star formation in a galaxy by transporting/mixing gas via gas inflow.

  • PDF

Evidence for the Luminosity Evolution of Type Ia Supernovae from the Ages of Early-type Host Galaxies

  • Lee, Young-Wook;Kang, Yijung;Kim, Young-Lo;Lim, Dongwook;Chung, Chul
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.56.1-56.1
    • /
    • 2013
  • Supernovae type Ia (SNe Ia) cosmology is providing the only direct evidence for the presence of dark energy. This result is based on the assumption that the look-back time evolution of SNe Ia luminosity, after light-curve shape correction, would be negligible. However, the most recent compilation of SNe Ia data shows systematic difference in the Hubble residual (HR) between the E and Sd/Irr galaxies, indicating that the light-curve fitters used by the SNe Ia community cannot quite correct for a large portion of the population age effect. In order to investigate this possibility more directly, we have obtained low-resolution spectra for 30 nearby early-type host galaxies. This data set is used to estimate the luminosity-weighted mean ages and metallicities of host galaxies by employing the population synthesis models. We found an interesting trend between the host galaxy age and HR, in the sense that younger galaxies have positive residuals (i.e., light-curve corrected SNe Ia luminosity is fainter). This result is rather independent of the choice of the population synthesis models employed. Taken at face value, this age (evolution) effect can mimic a large fraction of the HR used in the discovery of the dark energy. This result is significant at 1.4 - 3 sigma levels, depending on the light curve fitters adopted, and further observations and analyses are certainly required to confirm the trend reported here.

  • PDF

MOLECULAR GAS PROPERTIES UNDER ICM PRESSURE IN THE CLUSTER ENVIRONMENT

  • LEE, BUMHYUN;CHUNG, AEREE
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.491-494
    • /
    • 2015
  • We present 12CO (2-1) data for four spiral galaxies (NGC 4330, NGC 4402, NGC 4522, NGC 4569) in the Virgo cluster that are undergoing different ram pressure stages. The goal is to probe the detailed molecular gas properties under strong intra-cluster medium (ICM) pressure using high-resolution millimeter data taken with the Submillimeter Array (SMA). Combining this with Institut de RadioAstronomie $Millim{\acute{e}}trique$ (IRAM) data, we also study spatially resolved temperature and density distributions of the molecular gas. Comparing with multi-wavelength data (optical, $H\small{I}$, UV, $H{\alpha}$), we discuss how molecular gas properties and star formation activity change when a galaxy experiences $H\small{I}$ stripping. This study suggests that ICM pressure can modify the physical and chemical properties of the molecular gas significantly even if stripping does not take place. We discuss how this affects the star formation rate and galaxy evolution in the cluster environment.

The evolution of merger fraction for galaxies in NEP-Wide field

  • Kim, Eunbin;Jeong, Woong-Seob;Hwang, Ho Seong;Kim, Seong Jin;Goto, Tomotsugu
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.77.1-77.1
    • /
    • 2019
  • We present the results of the merger fraction evolution for galaxies in NEP-Wide field depending on star formation mode and redshift. We select the galaxies which have AKARI 9 ㎛ detections as a sample for large number of galaxies. We use multi-wavelength data from GALEX to Herschel, and Subaru HSC i-band images for analysis. We classify the merger galaxies with using Gini and M20, which are non-parametric calculated by statmorph code. We obtain the total infrared luminosity from the SED modeling with using one band, AKARI 9 ㎛. We find that the merger fractions of galaxies in all different star formation mode increase as the redshift increases. However, with fixed mass range of 10.5 < log(M🞵) < 11.5, the merger fractions of starbursts significantly increase as the redshift increases compared to those of main sequence and quiescent galaxies. We discuss the implications of these results in this poster.

  • PDF

A Mid-infrared View on the Fast Galaxy Evolution in Compact Groups

  • Lee, Gwang-Ho;Hwang, Ho Seong;Sohn, Jubee;Lee, Myung Gyoon
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.34.2-34.2
    • /
    • 2016
  • We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer data. We use a sample of 670 compact groups and their 2175 member galaxies with $M_r$ < -19 and 0.01 < z < 0.0741 from Sohn et al. (2016), which were identified through a friends-of-friends algorithm. We find that the MIR [3.4]-[12] colors of early-type galaxies in compact groups are on average bluer than those of early-type galaxies in clusters. Furthermore, we find that when compact groups have both early- and late-type member galaxies, the MIR colors of the late-type galaxies in those compact groups can be bluer than those of late-type galaxies in clusters. We also find that as background galaxy number densities of compact groups increase, compact group galaxies have higher early-type galaxy fractions and bluer MIR colors. These trends are also seen for background galaxies. However, at a given background density, compact group galaxies always have higher early-type galaxy fractions and bluer MIR colors than the background galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of the compact groups, and that galaxy evolution is faster in compact groups than in clusters.

  • PDF

GALAXY SED FITTING

  • Denis, Burgarella;Mederic, Boquien;Veronique, Buat;Laure, Ciesla;Yannick, Rhoelly
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.205-208
    • /
    • 2017
  • Modelling and fitting the spectral energy distribution (SED) of galaxies or regions of galaxies is one of the most useful methods available to the astronomer nowadays. By modelling the SEDs and comparing the models to the observations, we can collect important information on the physical processes at play in the formation and evolution of galaxies. The models allow to follow the evolution of the galaxies from their formation on. The versatility of code is crucial because of the diversity of galaxies. The analysis is only relevant and useful if the models can correctly reproduce this diversity now and across (as best as possible) all redshifts. On the other hand, the code needs to run fast to compare several million or tens of millions of models and to select the best (on a probabilistic basis) one that best resembles the observations. With this important point in mind, it seems logical that we should efficiently make use of the computer power available to the average astronomer. For instance, it seems difficult, today, to model and fit SEDs without a parallelized code. We present the new Python version of CIGALE SED fitting code and its characteristics. CIGALE comes in two main flavours: CIGALE Classic to fit SEDs and CIGALE Model to create spectra and SEDs of galaxies at all redshifts. The latest can potentially be used in conjunction with galaxy evolution models of galaxy formation and evolution such as semi-analytic ones.