• Title/Summary/Keyword: event mineralization

Search Result 13, Processing Time 0.028 seconds

Tectonics, sedimentation, and magmatism of the Cretaceous Gyeongsang (Kyongsang) Basin, Korea: Integrated approach to defining basin history and event mineralization

  • Chang, Ryu-In;Park, Seon-Gyu;Meen, Wee-Soo;Lee, Sang-Yeol
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.27-31
    • /
    • 2003
  • During the past decade, integrated stratigraphy has been effectively applied to many sedimentary basins to analyze stratigraphic response to tectonic evolution. This application has been beneficial to hydrocarbon exploration in the basins because it provides a better understanding of temporal and spatial relationships of hydrocarbon source and reservoir rocks as a function of basin evolution. Like the maturation, migration, and trapping of hydrocarbons, ore-forming processes in hydrothermal deposits may be causally linked to particular phases of basin evolution. Consequently, applying integrated stratigraphy to mineral exploration may be a logical and helpful approach to understanding ore-forming processes and predicting their occurrence, location, and origin. (omitted)

  • PDF

A Study on the Development of Self-Repairing Smart Concrete Using Microorganism (미생물(微生物)을 이용한 자기수부성(自己修復性) 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Chun, Woo-Young;Ko, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • This study was conducted to develop self-repairing ability for concrete so that inspection could be available even in the event of minute cracks, for more economic concrete structure maintenance and longevity. This is a basic attempt to develop self-repairing concrete using the biochemical reaction of bacteria through an innovative method. In this study, the characteristics and problems posed by self-repairing concrete as proposed in international scientific journals were examined, and the potential of new concrete reformation and performance improvement using bio-mineralization was explored. Bio-mineralization, which is an action of creating bio-minerals using an organism, was proposed. A new concept of bacteria such as bacillus pasteurii using bio-mineralization that precipitates calcium carbonate, as well as the possibility of mechanical performance and durability of concrete and repair of cracks, was introduced. Directions for further study through basic experiments and developmental feasibility of self-repairing concrete were also presented.

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Mineralogy and Chemical Compositions of Dangdu Pb-Zn Deposit (당두 연-아연 광상의 산출광물과 화학조성)

  • Lim, Onnuri;Yu, Jaehyung;Koh, Sang Mo;Heo, Chul Ho
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.123-140
    • /
    • 2013
  • The Dangdu Pb-Zn deposit is located at approximately 10 km south of Jecheon, Korea. Geology of Dangdu deposit area consists of Pre-cambrian metamorphic rocks, Ordovician sedimentary rocks, Jurassic and Cretaceous igneous rocks. The ore deposit is developed along the fracture trending $N20{\sim}40^{\circ}W$ in Ordovician limestone and is considered to be a skarn type ore deposit. The shape of ore bodies developed in the Dangdu ore deposit can be divided into lens-form(two ore bodies of -30 m level adit and one ore body of -63 m level adit) and pocket-form developed in -30 m level adit. Ore minerals observed in the ore deposits are magnetite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, cosalite, marcasite, hessite, native Bi and bismuthinite. Chemical composition of sphalerite ranges FeS 14.14~18.08 mole%, CdS 0.44~0.70 mole%, MnS 0.52~1.13, 1.53~2.09 mole%. Galena contains a small amount of silver with an average of 0.54 wt.%. An average composition of cosalite is Ag 2.43 wt.%, Bi 44.36 wt.%, Pb 35.05 wt.% which results the chemical formula of cosalite as $Pb_{1.7}Bi_{2.1}Ag_{0.2}S_5$. Skarn minerals consist of epidote, garnet, pyroxene, tremolite, quartz and calcite. The zoning pattern of the ore deposit can be subdivided into epidote-clinopyroxene zone, epidote-clinopyroxene-chlorite zone and epidote-garnet-clinopyroxene zone from the central part of the ore body towards the wall rocks. The chemical composition of garnet shows an increasing trend of grossular from epidote-clinopyroxene zone to epidote-garnet-clinopyroxene zone. Clinopyroxene occurs as a solid solution of diopside and hedenbergite, and the ratio of johannsenite increases from epidote-clinopyroxene zone to epidote-clinopyroxene-chlorite and epidote-garnet-clinopyroxene zones. The mineralization of the ore deposit is considered to be one stage event which can be separated into early skarn mineralization stage, middle ore mineralization stage and late low temperature mineralization stage. The temperature estimation from the low temperature mineralization range from $125{\sim}300^{\circ}C$ which is considered to be representing the temperature of late mineralization.

Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea (삼광 금-은광상의 산출광물, 유체포유물 및 안정동위원소 연구)

  • 유봉철;이현구;최선규
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.299-316
    • /
    • 2002
  • The Samkwang gold-silver deposits consist of gold-silver-bearing hydrothermal massive quartz veins which filled the fractures along fault shear (NE, NW) zones within Precambrian banded or granitic gneiss of Gyeonggi massif. Ore mineralization of this deposits occurred within a single stage of quartz vein which was formed by multiple episodes of fracturing and healing. Based on vein mineralogy and paragenesis, massive quartz veins are divided into two main paragenetic stages which are separated by a major faulting event. Main ore mineralization occurred at stage I. Wall-rock alteration from this deposits occur as mainly sericitization, chloritization, silicification and minor amounts of pyritization, carbonitization, propylitization and argillitization. Ore minerals are composed mainly of arsenopyrite (29.21-32.24 As atomic %), pyrite, sphalerite (6.45-13.82 FeS mole %), chalcopyrite, galena with minor amounts of pyrrhotite, marcasite, electmm (39.98-66.82 Au atomic %) and argentite. Systematic studies of fluid inclusions in early quartz veins and microcracks indicate two contrasting physical-chemical conditions: 1). temperature (215-345$^{\circ}$C) and pressure (1296-2022 bar) event with $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids (0.8-6.3 wt. %) related to the early sulfide deposition, 2). temperature (203-441$^{\circ}$C) and pressure (320 bar) event with $H2_{O}$-NaCI $\pm$ $CO_{2}$ fluids (5.7-8.8 wt. %) related to the late sulfide and electrum assemblage. The H20-NaCI $\pm$ $CO_{2}$ fluids represent fluids evolved through fluid unmixing of an $H_{2}O-CO_{2}-CH_{4}-NaCl$fluids due to decreases in fluid pressure and influenced of deepcirculated meteoric waters possibly related to uplift and unloading of the mineralizing suites. Calculated sulfur isotope compositions (${\delta}^{34}S_{fluid}$) of hydrothermal fluids (1.8-4.9$\textperthousand$) indicate that ore sulfur was derived from an igneous source. Measured and calculated oxygen and hydrogen isotope compositions (${\delta}^{18}O_{I120}$, ${\delta}D$) of ore fluids (-5.9~10.9$\textperthousand$, -102~-87$\textperthousand$) indicate that mesothermal auriferous fluids at Samkwang gold-silver deposits were likely mixtures of $H_{2}O$-rich, isotopically less evolved meteoric water and magmatic fluids.

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

Tin, Tungsten Mineralization in Bonghwa-Uljin Area (봉화(奉化)-울진지역(蔚珍地域)의 석(錫), 중석광화작용(重石鑛化作用))

  • Park, Hee-In;Lee, Sang Man
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1984
  • The tin and tungsten deposits are embedded around the age unknown Buncheon granite gneiss which intruded the Precambrian schists, gneiss and amphibolites in Bonghwa-Uljin area. Pegmatite dike swarm developed intermittently about 4km along the southern border of Buncheon granite gneiss at Wangpiri area. Thickness of pegmatite dikes range from 0.5 to 15m. Pegmetite is consisted of quartz, microcline, albite, muscovite and frequently topaz, tourmaline, garnet, fluorite, fluorapatite and lepidolite. Pegmatite dikes are greisenized, albitized and microclinized along dike walls. Cassiterites are irregularly disseminated through the intensely greienized and albitized parts of the pegmatite. Cassiterite crystals are mainly black to dark brown and contain considerable Ta and Nb. Average Ta and Nb contents of the four cassiterite samples are 5300 and 3400 ppm. The Ssangjeon tungsten deposits is embedded within the pegmatite dike developed along the northern contact of Buncheon granite gneiss with amphibolite. This pegmatite developed 2km along the strike and thickness varies from 10 to 40m. Mineral constituents of the pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. Ore minerals are ferberite and scheelite with minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, marcasite, and fluorite. Color and occurrence of quartz reveals that quartz formed at three different stages; quartz I, the earliest milky white quartz formed as a rock forming mineral of simple pegmatite; quartz II, gray to dark gray quartz which replace the minerals associated with quartz I; quartz III, the latest white translucent quartz which replace the quartz I and H. All of the ore minerals are precipitated during the quartz II stage. Fluid inclusion in quartz I and II are mainly gaseous inclusions and liquid inclusions are contained in quartz III and fluorite. Salinities of the inclusion in quartz I and II ranges from 4.5 to 9.5 wt. % and 5.1 to 6.0 wi. % equivalent NaCl respectively. Salinities of the inclusion in fluorite range from 3.5 to 8.3 wt. % equivalent NaCl. Homogenization temperatures of the inclusion in quartz I, II and III range from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and 278 to $357^{\circ}C$. Data gathered in this study reveals that tin and tungsten mineralization in this area are one of prolonged event after the pegmatite formation around Buncheon granite gneiss.

  • PDF

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.