• Title/Summary/Keyword: evaluation models

Search Result 3,815, Processing Time 0.041 seconds

Evaluation of Seismic Performance of Pile-supported Wharves Installed in Saturated Sand through Response Spectrum Analysis and Dynamic Centrifuge Model Test (동적원심모형실험 및 응답스펙트럼해석을 통한 포화지반에 관입된 잔교식 안벽의 내진성능 평가)

  • Yun, Jung-Won;Han, Jin-Tae;Lee, Seokhyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.73-87
    • /
    • 2021
  • Pile-supported wharf is a structure that can transmit and receive cargo, and it is mainly installed on saturated inclined ground. In the seismic design of these structures, the codes suggest using the response spectrum analysis method as a preliminary design method. However, guideline on modeling method for pile-supported wharf installed in saturated soil is lacking. Therefore, in this study, the dynamic centrifuge model test and response spectrum analysis were performed to evaluate the seismic performance of pile-supported wharf installed into the saturated soil. For the test, some sections (3×3 pile group) among the pile-supported wharf were selected, and they were classified into two model (dry and saturated sand model). Then the response spectrum analysis was performed by using the soil spring method to the test model. As a result of test and analysis, the m om ent difference occurred within a m axim um of 51% in the dry sand m odel and the saturated sand model where liquefaction does not occur, and it was found that the pile moment by depth was properly simulated. Therefore, in the case of these models, it is appropriate to perform the modeling using the Terzaghi (1955) constant of horizontal subgrade reaction (nh)

Evaluation of Floor Acceleration for the Seismic Design of Non-Structural Elements according to the Core Shape (코어형태에 따른 비구조요소 내진설계를 위한 층가속도 평가)

  • Ki, Ho-Seok;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the floor acceleration for the seismic design of non-structural elements was evaluated using the core shape as a planar variable. Linear time history analysis using 20 models with 5 different planes and 4 different floors on each plane depending on the change in the shape (position and specific gravity) of the core in the square biaxially symmetric plane was performed. The analysis confirmed that the torsional amplification of the floor acceleration was up to 1.7 times in the plane subjected to eccentricity depending on the position of the core, and the effect of torsion was the greatest in the middle floor of the structure. In a plane where only the specific gravity of the core was changed without eccentricity, when the period was less than 0.4694 s, the maximum floor acceleration decreased in the lower floors and increased in the upper floors as the period increased. Conversely, when the period was 0.4694 s or more, it was confirmed that the floor acceleration increased in the lower part and decreased in the upper part as the period increased.

Evaluation of Practical Requirements for Automated Detailed Design Module of Interior Finishes in Architectural Building Information Model (건축 내부 마감부재의 BIM 기반 상세설계 자동화를 위한 실무적 요구사항 분석)

  • Hong, Sunghyun;Koo, Bonsang;Yu, Youngsu;Ha, Daemok;Won, Youngkwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.87-97
    • /
    • 2022
  • Although the use of BIM in architectural projects has increased, repetitive modeling tasks and frequent design errors remain as obstacles to the practical application of BIM. In particular, interior finishing elements include the most varied and detailed requirements, and thus requires improving its modelling efficiency and resolving potential design errors. Recently, visual programming-based modules has gained traction as a way to automate a series of repetitive modeling tasks. However, existing approaches do not adequately reflect the practical modeling needs and focus only on replacing siimple, repetitive tasks. This study developed and evaluated the performance of three modules for automatic detailing of walls, floors and ceilings. The three elements were selected by analyzing the man-hours and the number of errors that typically occur when detailing BIM models. The modules were then applied to automatically detail a sample commercial facility BIM model. Results showed that the implementations met the practical modeling requirements identified by actual modelers of an construction management firm.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Comparative Evaluation on the Cost Analysis of Software Development Model Based on Weibull Lifetime Distribution (와이블 수명분포에 근거한 소프트웨어 개발모형의 비용 분석에 관한 비교 평가)

  • Bae, Hyo-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.193-200
    • /
    • 2022
  • In this study, the finite-failure NHPP software reliability model was applied to the software development model based on the Weibull lifetime distribution (Goel-Okumoto, Rayleigh, Type-2 Gumbe), which is widely used in the software reliability field, and then the cost attributes were compared and evaluated. For this study, failure time data detected during normal operation of the software system were collected and used, the most-likelihood estimation (MLE) method was applied to the parameter estimation of the proposed model, and the calculation of the nonlinear equation was solved using the binary method. As a result, first, in the software development model, when the cost of testing per unit time and the cost of removing a single defect increased, the cost increased but the release time did not change, and when the cost of repairing failures detected during normal system operation increased, the cost increased and the release time was also delayed. Second, as a result of comprehensive comparative analysis of the proposed models, it was found that the Type-2 Gumble model was the most efficient model because the development cost was lower and the release time point was relatively faster than the Rayleigh model and the Goel-Okumoto basic model. Third, through this study, the development cost properties of the Weibull distribution model were newly evaluated, and the analyzed data is expected to be utilized as design data that enables software developers to explore the attributes of development cost and release time.

Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques (기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구)

  • Kim, Kyung-Sil
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.7-15
    • /
    • 2022
  • To adopt the development in the medical scenario IoT developed towards the advancement with the processing of a large amount of medical data defined as an Internet of Medical Things (IoMT). The vast range of collected medical data is stored in the cloud in the structured manner to process the collected healthcare data. However, it is difficult to handle the huge volume of the healthcare data so it is necessary to develop an appropriate scheme for the healthcare structured data. In this paper, a machine learning mode for processing the structured heath care data collected from the IoMT is suggested. To process the vast range of healthcare data, this paper proposed an MTGPLSTM model for the processing of the medical data. The proposed model integrates the linear regression model for the processing of healthcare information. With the developed model outlier model is implemented based on the FinTech model for the evaluation and prediction of the COVID-19 healthcare dataset collected from the IoMT. The proposed MTGPLSTM model comprises of the regression model to predict and evaluate the planning scheme for the prevention of the infection spreading. The developed model performance is evaluated based on the consideration of the different classifiers such as LR, SVR, RFR, LSTM and the proposed MTGPLSTM model and the different size of data as 1GB, 2GB and 3GB is mainly concerned. The comparative analysis expressed that the proposed MTGPLSTM model achieves ~4% reduced MAPE and RMSE value for the worldwide data; in case of china minimal MAPE value of 0.97 is achieved which is ~ 6% minimal than the existing classifier leads.

Evaluating SR-Based Reinforcement Learning Algorithm Under the Highly Uncertain Decision Task (불확실성이 높은 의사결정 환경에서 SR 기반 강화학습 알고리즘의 성능 분석)

  • Kim, So Hyeon;Lee, Jee Hang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.331-338
    • /
    • 2022
  • Successor representation (SR) is a model of human reinforcement learning (RL) mimicking the underlying mechanism of hippocampal cells constructing cognitive maps. SR utilizes these learned features to adaptively respond to the frequent reward changes. In this paper, we evaluated the performance of SR under the context where changes in latent variables of environments trigger the reward structure changes. For a benchmark test, we adopted SR-Dyna, an integration of SR into goal-driven Dyna RL algorithm in the 2-stage Markov Decision Task (MDT) in which we can intentionally manipulate the latent variables - state transition uncertainty and goal-condition. To precisely investigate the characteristics of SR, we conducted the experiments while controlling each latent variable that affects the changes in reward structure. Evaluation results showed that SR-Dyna could learn to respond to the reward changes in relation to the changes in latent variables, but could not learn rapidly in that situation. This brings about the necessity to build more robust RL models that can rapidly learn to respond to the frequent changes in the environment in which latent variables and reward structure change at the same time.

Effectiveness of the Detection of Pulmonary Emphysema using VGGNet with Low-dose Chest Computed Tomography Images (저선량 흉부 CT를 이용한 VGGNet 폐기종 검출 유용성 평가)

  • Kim, Doo-Bin;Park, Young-Joon;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.411-417
    • /
    • 2022
  • This study aimed to learn and evaluate the effectiveness of VGGNet in the detection of pulmonary emphysema using low-dose chest computed tomography images. In total, 8000 images with normal findings and 3189 images showing pulmonary emphysema were used. Furthermore, 60%, 24%, and 16% of the normal and emphysema data were randomly assigned to training, validation, and test datasets, respectively, in model learning. VGG16 and VGG19 were used for learning, and the accuracy, loss, confusion matrix, precision, recall, specificity, and F1-score were evaluated. The accuracy and loss for pulmonary emphysema detection of the low-dose chest CT test dataset were 92.35% and 0.21% for VGG16 and 95.88% and 0.09% for VGG19, respectively. The precision, recall, and specificity were 91.60%, 98.36%, and 77.08% for VGG16 and 96.55%, 97.39%, and 92.72% for VGG19, respectively. The F1-scores were 94.86% and 96.97% for VGG16 and VGG19, respectively. Through the above evaluation index, VGG19 is judged to be more useful in detecting pulmonary emphysema. The findings of this study would be useful as basic data for the research on pulmonary emphysema detection models using VGGNet and artificial neural networks.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF