• Title/Summary/Keyword: evaluation errors

Search Result 1,075, Processing Time 0.024 seconds

Importance of a rigorous evaluation of the cracking moment in RC beams and slabs

  • Lopes, A.V.;Lopes, S.M.R.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.275-291
    • /
    • 2012
  • The service loads are often decisive in the design of concrete structures. The evaluation of the cracking moment, $M_{cr}$, is an important issue to predict the performance of the structure, such as, the deflections of the reinforced concrete beams and slabs. To neglect the steel bars of the section is a simplification that is normally used in the computation of the cracking moment. Such simplification leads to small errors in the value of this moment (typically less than 20%). However, these small errors can conduce to significant errors when the values of deflections need to be computed from $M_{cr}$. The article shows that an error of 10% on the evaluation of $M_{cr}$ can lead to errors over 100% in the deformation values. When the deformation of the structure is the decisive design parameter, the exact computing of the cracking moment is obviously very important. Such rigorous computing might lead to important savings in the cost of the structure. With this article the authors wish to draw the attention of the technical community to this fact. A simple equation to evaluate the cracking moment, $M_{cr}$, is proposed for a rectangular cross-section. This equation leads to cracking moments higher than those obtained by neglecting the reinforcement bars and is a simple rule that can be included in Eurocode 2. To verify the accuracy of the developed model, the results of the proposed equation was compared with a rigorous computational procedure. The proposed equation corresponds to a good agreement when compared with the previous approach and, therefore, this model can be used as a practical aid for calculating an accurate value of the cracking moment.

A Study of Error Analysis for Post Evaluation System on the Construction Projects (건설공사 사후평가시스템 입력오류 분석에 관한 연구)

  • Kim, Kyong-Hoon;Lee, Du-Heon;Kim, Tae-Yeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.77-85
    • /
    • 2015
  • The data are often missed and many errors of the data are generated in the input process for the post evaluation system on the construction projects, and the reliability of the data falls down much. Accordingly, the detailed analysis about missing and error of data was conducted to ensure reliability of the analysis results about post evaluation on the construction projects. As results in this study, a lot of input data were missed at the initial construction phase, and the data errors were found in the inaccuracy of reference reports, the lack of understanding about input data, and the failure of KRW unit.

Dynamic discrmination of sensory evaluation capability using paired-comparison method (1대비교에 의한 관능평가능력의 동적판별)

  • 김정만;이상도
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.113-123
    • /
    • 1993
  • In a sensory evaluation, the data obtained by a result of evaluation have a wide dispersion and fuzziness because human sense organ is used as a means of measuring sensation instead of measuring instruments. These dispersion and fuzziness are caused by all kinds of time error and have a great influence on a sensory evaluation, but most of previous papers don't deal with these time errors. In this study, a comparative judgement capacity of an evaluator is discriminated by means of the eigen-structure analysis on the premise that evaluation value of sensory evaluators obtained by a paired-comparison become different by the order of sample presentation

  • PDF

Design of Menu Driven Interface using Error Analysis (에러 분석을 통한 사용자 중심의 메뉴 기반 인터페이스 설계)

  • Han, Sang-Yun;Myeong, No-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.9-21
    • /
    • 2004
  • As menu structure of household appliance is complicated, user's cognitive workload frequently occurs errors. In existing studies, errors didn't present that interpretation for cognitive factors and alternatives, but are only considered as statistical frequency. Therefore, error classification and analysis in tasks is inevitable in usability evaluation. This study classified human error throughout information process model and navigation behavior. Human error is defined as incorrect decision and behavior reducing performance. And navigation is defined as unrelated behavior with target item searching. We searched and analyzed human errors and its causes as a case study, using mobile phone which could control appliances in near future. In this study, semantic problems in menu structure were elicited by SAT. Scenarios were constructed by those. Error analysis tests were performed twice to search and analyze errors. In 1st prototype test, we searched errors occurred in process of each scenario. Menu structure was revised to be based on results of error analysis. Henceforth, 2nd Prototype test was performed to compare with 1st. Error analysis method could detect not only mistakes, problems occurred by semantic structure, but also slips by physical structure. These results can be applied to analyze cognitive causes of human errors and to solve their problems in menu structure of electronic products.

Improving the Reliability of the National Database for Chemical Hazard Information (국가 화학물질 유해성정보 데이터베이스 구축 과정의 신뢰도 제고 방안에 관한 연구)

  • Lee, Somin;Lee, Minhyeok;Kang, Mijin;Kwon, Soon-Kwang;Ra, Jin-Sung;Park, Beaksoo
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.4
    • /
    • pp.410-422
    • /
    • 2020
  • Objectives: According to the Act on Registration, Evaluation, Etc. of Chemicals, new and existing chemicals must be registered by 2030. In addition, industries need to submit hazard data as an attachment during the registration process. Therefore, we constructed a nationwide chemical database to support small industry by providing hazard data and original sources. During the process, we developed a new standard procedure for minimizing errors and increasing reliability. Methods: We analyzed the categories of errors and the cause of the errors through the verification results of the 2019 project. We present an improved database construction methodology and system. Results: Errors are categorized according to their causative factors into simple, technical, and structural type errors. Simple errors arise simply because of decreased concentration or negligence in following the instructions. Technical errors are caused by a discrepancy between the professional field and the type of data. Structural errors indicate systemic errors such as incomplete forms on the excel database or ambiguity in the guidelines. Lessons from the errors collected in the 2019 project are used to update the procedures for database authorization and technical guidelines. The main update points are as follows; 'supplementation of review process', 'giving regular training to external reviewers', 'giving additional information to authors, like physico-chemical properties of substances, degradability, etc.', 'amendment of excel form', and 'guideline upgrades'. Conclusions: We conducted this study with the aim of improving the accuracy and reliability of the database of hazard information for chemical substances. The new procedures and guidelines are now being used in the 2020 project for construction of a hazard information database for Korea.

A study of the threats towards the flight crew (민간항공사의 운항승무원에 영향을 주는 위협관리에 관한 연구)

  • Choi, Jin-Kook;Kim, Chil-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • The flight deck crew must manage complexity during daily flight operations. The Airline may obtain data regarding threats and errors through LOSA(Line Operations Safety Audits) on normal flights as predictive safety tool in Safety Management System of the Airline to actively improve the systems such as SOP(Standard Operation Procedure), training, evaluation and the TEM(Threat and Error Management) for the flight deck crew. The flight deck crew make errors when they fail managing threats. The crew mismanage around ten percent of threats and commit errors. The major mismanaged threats are aircraft malfunction, ATC(Air Traffic Communication), and wether threats. The effective countermeasures of TEM for manageing threats are leadership, workload management, monitor & cross check, Vigilance, communication environment and cooperation of the crew. It is important that organizations must monitor for the hazards of threats and improve system for the safer TEM environments.

Development of Calibration and Real-Time Compensation System for Total Measuring Accuracy in a Commercial CMM (상용 3차원 측정기의 전체 측정정밀도 교정 및 실시간 보정시스템)

  • 박희재;김종후
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2358-2367
    • /
    • 1994
  • This paper presents techniques for evaluation and compensation of total measuring errors in a commercial CMM. The probe errors as well as the machine geometric errors are assessed from probing of the mechanical artefacts such as shpere, step, and rings. For the error compensation, the integrated volumetric error equations are considered, including the probe error adn the machine geometric error. The error compensation is performed on the absolute scale coordinate system, in order to overcome the redundant degree of freedom in the CMM with multi-axis probe. A interface box and corresponding software driver are developed for data intercepting/correction between the machine controller and machine, thus the volumetric errors can be compensated in real time with minimum interference to the operating software and hardware of a commercial CMM. The developed system applied to a practical CMM installed on the shop floor, and demonstrated its performance.

Calibration of 6-DOF Parallel Mechanism Through the Measurement of Volumetric Error (공간오차 측정을 통한 6자유도 병렬기구의 보정)

  • Oh, Yong-Taek;Saragih, Agung S.;Kim, Jeong-Hyun;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.48-54
    • /
    • 2012
  • This paper introduces the kinematic calibration method to improve the positioning accuracy of a parallel mechanism. Since all the actuators in the parallel mechanism are controlled simultaneously toward the target position, the volumetric errors originated from each motion element are too complicated. Therefore, the exact evaluation of the error sources of each motion element and its calibration is very important in terms of volumetric errors. In the calibration processes, the measurement of the errors between commands and trajectories is necessary in advance. To do this, a digitizer was used for the data acquisition in 3 dimensional space rather than arbitrary planar error data. After that, the optimization process that was used for reducing the motion errors were followed. Consequently, Levenberg-Marquart algorithm as well as the error data acquisition method turned out effective for the purpose of the calibration of the parallel mechanism.

Accuracy Evaluation and Enhancement of Machine Tools Using a Kinematic Ball Bar (기구볼바를 이용한 가공기계의 정밀도 평가 및 향상 기술 개발)

  • Moon, J.H.;Pahk, H.J.;Chu, C.N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.114-121
    • /
    • 1996
  • This paper presents an useful technique for assessing the volumetric errors in multi-axis machine tools using the kinematic double ball bar. This system has been developed based on the volumetric error map which describes the 3 dimensional errors of machine tools. The developed system inputs the measured radial data of 3 different planes, respectively XY,YZ,ZX, analysing the volumetric errors such as positional. straightness, angle, and squareness errors, etc. The developed system has been tested in a practical machine tool, and showed high potential for the error assessment of multi-axis machine tools.

  • PDF

A Study on the Risk Assessment System for Human Factors (휴먼에러를 중심으로 한 위험요인 도출 방법론에 관한 연구)

  • Jung, Sang Kyo;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.79-84
    • /
    • 2014
  • Human error is one of the major contributors to the accidents. A lot of risk assessment techniques have been developed for prevention of accidents. Nevertheless, most of them were interested in physical factors, because quantitative evaluation of human errors was difficult quantitatively. According to lack of risk assessment techniques about human errors, most of industrial risk assessment for human errors were based on data of accident analysis. In order to develop an effective countermeasure to reduce the risk caused by human errors, a systematic analysis is needed. Generally, risk assessment system is composed of 5 step(classification of work activity, identification of hazards, risk estimation, evaluation and improvement). This study aimed to develop a risk identification technique for human errors that could mainly be applied to industrial fields. In this study, Ergo-HAZOP and Comprehensive Human Error Analysis Technique were used for developing the risk identification technique. In the proposed risk identification technique, Ergo-HAZOP was used for broad-brush risk identification. More critical risks were analysed by Comprehensive Human Error Analysis Technique. In order to verify applicability, the proposed risk identification technique was applied to the work of pile head cutting. As a consequence, extensive hazards were identified and fundamental countermeasures were established. It is expected that much attention would be paid to prevent accidents by human error in industrial fields since safety personnel can easily fint out hazards of human factors if utilizing the proposed risk identification technique.