• Title/Summary/Keyword: eutrophication evaluation

Search Result 62, Processing Time 0.025 seconds

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Evaluation of Contamination Level of the Sediments from Chusori and Chudong Areas in Daechung Reservoir (대청호 추소 및 추동 수역 퇴적물의 오염도 평가)

  • Oh, Kyoung-Hee;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • In order to analyze the contamination level of sediment samples taken from Chusori and Chudong areas in Daechung Reservoir, the particle size and concentrations of organics and nutrients were analyzed and phosphorus fractionation analysis was conducted. The average fraction of silt-sized particles was 92% in the sediments taken from Chudong area and Chusori area at the site adjacent to main current, which was higher than that from the upper Chusori area. The concentrations of total phosphorus in the sediments at Chusori and Chudong area were 999 (${\pm}98$) and 1,123 (${\pm}119$) mg/kg sediment, respectively. The fractions of autochthonous phosphorus, which can be readily eluted by change of environmental conditions, were much higher than those of allochthonous phosphorus, indicating the internal load can contribute the eutrophication in these areas. The concentrations of total nitrogen were over 5,600 mg/kg sediment in all samples, which is the guideline of Contamination Assessment of River and Lake Sediments of the Ministry of Environment, indicating the contamination level of total nitrogen is serious in the sediments. It is concluded that the countermeasures to manage the quality of sediments are required to improve the water quality in the Daechung Reservoir.

A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management (새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구)

  • Jang, Nam-Jung;Kim, Bo-Guk;Im, Seoung-Hyun;Kim, Tae-Kyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Measures against non-point sources pollution in Saemangeum watershed should be established to control water quality of Saemangeum lake, because non-point sources pollution discharge portions of BOD (Biological Oxygen Demand) and TP (Total Phosphorous) in the watershed were 68.4 and 61.4%, respectively. In this study, target regions for the non-point sources pollution control were selected to apply BMP (Best Management Practices) for the agricultural area of Saemanguem watershed in terms of TP that caused eutrophication at the lake. Target regions were selected by the NPSI (Non-point source index) that was calculated by the total 12 indexes at the steps of non-point source production, emission and outflow. Weights of the indexes were determined by the watershed management experts oriented AHP (Analytic Hierarchy Process) analysis. The target region was selected at the unit of Korean basic administrative district 'Dong/Li'. At the results of NPSI calculations through the GIS (Geographical Information System) tools, two sets of 5 regions were selected in the Man-kyung River and Dong-gin River. The main reason for the selected target regions was livestock activity in the district. The results of this study can be useful for implementing the reduction projects of agricultural non-point sources pollution to control water quality in Saemangeum lake.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.

Evaluations of Ecological Habitat, Chemical Water Quality, and Fish Multi-Metric Model in Hyeongsan River Watershed (형산강 수계의 생태 서식지, 화학적 수질 및 어류의 다변수모델 평가)

  • Kim, Yu-Pyo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.279-287
    • /
    • 2010
  • This study was to evaluate ecological conditions of Hyeongsan River watershed from April to September 2009. The ecological health assessments was based on Qualitative Habitat Evaluation Index (QHEI), water chemistry during 2000~2009, and the fish multi-metric model, Index of Biological Integrity (IBI). For the study, the models of IBI and QHEI were modified as 8 and 11 metric attributes, respectively. Values of IBI averaged 25.4 (n=6), which is judged as a "fair" condition (C) after the criteria of Barbour et al. (1999). The distinct spatial variation was found in the IBI. Physical habitat health, based on the values of QHEI, varied from 76 in the downriver (H6) to 150.5 in the headwater (H1) and was evidently more disturbed in the downriver reach. Values of BOD and COD averaged 2.4 $mgL^{-1}$ (range: 0.3~13.8 $mgL^{-1}$) and 4.3 $mgL^{-1}$ (scope: 0.6~12.8 $mgL^{-1}$), respectively during the study period. Total nitrogen (TN) and total phosphorus (TP) averaged 3.0 $mgL^{-1}$ and 103.5 ${\mu}gL^{-1}$, respectively, indicating a severe eutrophication, and the nutrients increased more in the downriver than the headwater. Overall, physical, chemical and IBI parameters showed a typical downriver degradation along main axis of the river from the headwater-to-the downriver. This was mainly attributed to livestock waste and residential influences along with industrial discharge from the urban region.

Water Quality and Ecosystem Health Assessments in Urban Stream Ecosystems (도심하천 생태계에서의 수질 및 생태건강성 평가)

  • Kim, Hyun-Mac;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.311-322
    • /
    • 2008
  • The objectives of the study were to analyze chemical water quality and physical habitat characteristics in the urban streams (Miho and Gap streams) along with evaluations of fish community structures and ecosystem health, throughout fish composition and guild analyses during 2006$\sim$2007. Concentrations of BOD and COD averaged 3.5 and 5.7 mg L$^{-1}$, in the urban streams, while TN and TP averaged 5.1 mg L$^{-1}$ and 274 ${\mu}g$ L$^{-1}$, indicating an eutrophic state. Especially, organic pollution and eutrophication were most intense in the downstream reach of both streams. Total number of fish was 34 species in the both streams, and the most abundant species was Zacco platypus (32$\sim$42% of the total). In both streams, the relative abundance of sensitive species was low (23%) and tolerant and omnivores were high (45%, 52%), indicating an typical tolerance and trophic guilds of urban streams in Korea. According to multi-metric models of Stream Ecosystem Health Assessments (SEHA), model values were 19 and 24 in Miho Stream and Gap Stream, respectively. Habitat analysis showed that QHEI (Qulatitative Habitat Evaluation Index) values were 123 and 135 in the two streams, respectively. The minimum values in the SEHA and QHEI were observed in the both downstreams, and this was mainly attributed to chemical pollutions, as shown in the water quality parameters. The model values of SEHA were strongly correlated with conductivity (r=-0.530, p=0.016), BOD (r=-0.578, p< 0.01), COD (r=-0.603, p< 0.01), and nutrients (TN, TP: r>0.40, p<0.05). This model applied in this study seems to be a useful tool, which could reflect the chemical water quality in the urban streams. Overall, this study suggests that consistent ecological monitoring is required in the urban streams for the conservations along with ecological restorations in the degradated downstrems.

Evaluation of Nutrient Discharges from Greenhouses with Flooding Soil Surface at Two Different Locations (입지조건이 다른 시설재배지에서 담수처리에 따른 양분 용탈량 평가)

  • Kim, Min-Kyeong;Roh, Kee-An;Ko, Byong-Gu;Park, Seong-Jin;Jung, Goo-Bok;Lee, Deog-Bae;Kim, Chul-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.315-321
    • /
    • 2010
  • Greenhouse soil cultivated with excessive compost and chemical fertilizer has been an issue to deteriorate soil and water quality in the environment. The objective of this study was to evaluate the nutrient outflow by desalting method, flooding soil surface, after vegetable cropping in greenhouse soils. Field experiment from July to September 2008, was conducted to quantify greenhouse locations, i.e. alluvial plain and local valley. The changes of desalinization in both locations were higher as the amounts of irrigated and drained water were increased. Particularly, the ratio of desalinization in alluvial plain was much higher (66.7%) than the one in local valley (45.6%). However, $NH_4$-N contents of local valley soil during the flooding were higher than in those of alluvial plain. This was caused by high total nitrogen and organic matter in local valley soil than those in alluvial plain soil. With comparing to the input and output loads of T-N and T-P in greenhouses with local valley and alluvial plain soils, the output loads of nutrients were larger than the input loads of nutrients. This result showed that the flooding soil surface can be a good treatment to desalinize greenhouse soils. However, this conclusion remained that the flooding water containing high N and P concentrations might cause the secondary effect on the quality of streams and groundwater since excessive nutrient concentrations can be the main cause of eutrophication problem in aquatic environment.

Evaluation of Water Quality Impacts of Forest Fragmentation at Doam-Dam Watershed using GIS-based Modeling System (GIS 기반의 모형을 이용한 도암댐 유역의 산림 파편화에 따른 수(水)환경 영향 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoungjae;Choi, Joongdae;Shin, Yong-Chul;Lyou, Chang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.81-94
    • /
    • 2006
  • The water quality impacts of forest fragmentation at the Doam-dam watershed were evaluated in this study. For this ends, the watershed scale model, Soil and Water Assessment Tool (SWAT) model was utilized. To exclude the effects of different magnitude and patterns in weather, the same weather data of 1985 was used because of significant differences in precipitation in year 1985 and 2000. The water quality impacts of forest fragmentation were analyzed temporarily and spatially because of its nature. The flow rates for Winter and Spring has increased with forest fragmentations by $8,366m^3/month$ and $72,763m^3/month$ in the S1 subwatershed, experiencing the most forest fragmentation within the Doam-dam watershed. For Summer and Fall, the flow rate has increased by $149,901m^3/month$ and $107,109m^3/month$, respectively. It is believed that increased flow rates contributed significant amounts of soil erosion and diffused nonpoint source pollutants into the receiving water bodies. With the forest fragmentation in the S1 watershed, the average sediment concentration values for Winter and Spring increased by 5.448mg/L and 13.354mg/L, respectively. It is believed that the agricultural area, which were forest before the forest fragmentation, are responsible for increased soil erosion and sediment yield during the spring thaw and snow melts. For Spring and Fall, the sediment concentration values increased by 20.680mg/L and 24.680mg/L, respectively. Compared with Winter and Spring, the increased precipitation during Summer and Fall contributed more soil erosion and increased sediment concentration value in the stream. Based on the results obtained from the analysis performed in this study, the stream flow and sediment concentration values has increased with forest fragmentation within the S1 subwatershed. These increased flow and soil erosion could contribute the eutrophication in the receiving water bodies. This results show that natural functionalities of the forest, such as flood control, soil erosion protection, and water quality improvement, can be easily lost with on-going forest fragmentation within the watershed. Thus, the minimize the negative impacts of forest fragmentation, comprehensive land use planning at watershed scale needs to be developed and implemented based on the results obtained in this research.

  • PDF

Comparative Evaluation for Environmental Impact of Rapeseed and Barley Cultivation in Paddy Field for Winter using Life Cycle Assessment (겨울논 유채와 보리 재배시 전과정평가 방법을 이용한 환경영향 비교 평가)

  • Hong, Seung-Gil;Shin, JoungDu;Park, Kwang-Lai;Ahn, Min-Sil;Ok, Yong-Sik;Kim, Jeong-Gyu;Kim, Seok-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.59-68
    • /
    • 2016
  • The application of the Life Cycle Assessment (LCA) methodology to assess the environmental impact of rapeseed cultivation in winter fallow after harvesting rice was investigated and compared with barley cultivation in crop rotation system. Data for input materials were collected and analyzed by 1 ton rapeseed and barley as functional unit. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. From the comparison of impact categories such as greenhouse effect, ozone depletion, acidification, heavy metals, carcinogens, summer smog, and energy resources for 1 ton of final product, emission potential from rapeseed was higher than that from barley. The range from 65 to 96% of these potential came from chemical fertilizer. On the other hand, eutrophication potential from barley was higher than that from rapeseed, mainly came from utilizing the chemical fertilizer. During the cultivation of barley and rape, environmental burden by heavy metals was evaluated by 0.5 Pt, larger than points from other impact categories. The sum of points from all impact categories in barley and rapeseed was calculated to be 0.78 Pt and 0.82 Pt, respectively. From the sensitivity analysis for barley and rapeseed, scenario 1 (crop responses to fertilization level) showed the environmental burden was continuously increased with the amount of fertilization in barley cultivation, while it was not increased only at the optimum crop responses to fertilization in rapeseed (R3). With these results, rapeseed cultivation in winter fallow paddy contributed to the amounts of environmental burden much more than barley cultivation. It is, however, highly determined that environmental weighted point resulted from evaluating both cultivation was not significantly different.