• Title/Summary/Keyword: eutrophic water

Search Result 296, Processing Time 0.026 seconds

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Numerical Modeling Effects of a Skimmer Weir Method on the Control of Algal Growth in Daecheong Reservoir (부상웨어 설치에 따른 대청호 조류 성장 억제 효과 수치모의)

  • Kim, Yu Kyung;Chung, Se Woong;Lee, Heung Soo;Jung, Yong Rak
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2007
  • A float-type weir has been proposed for the control of algal blooms in some of eutrophic reservoirs recently. It is known as a costly and ecologically sound method, but there is little understanding about the sustainability of this low-cost technology for reservoirs that are located in monsoon climate areas where large flood events during the summer cause high water surface fluctuations. The objective of this study was to assess the effectiveness of a skimmer weir aimed at controlling algal blooms in the lacustrine zone and near the drinking water withdrawal structures of Daecheong Reservoir under various hydrodynamic flow conditions. The effect of weir on the control of algal blooms was simulated using a laterally averaged two-dimensional hydrodynamic and eutrophication model that can accommodate vertical displacement of the weir following the water surface fluctuations. Numerical simulations were performed for two different hydrological conditions, 2001 and 2004 for representing drought year and normal year, respectively. The results showed that the weir is very effective method to control algal blooms in the reservoir by curtailing the transport of phosphorus and algae from contaminated inflow to the downstream lacustrine epilimnion during the draught year. However, large flood events occurred in 2004 transported nutrients and algae built upstream of the weir into the downstream euphotic zone by strong entrainments.

Evaluation of Trophic State of a Small-scale Pond (Wonheung) in Ecological Park (소규모 생태연못(원흥이 방죽)의 부영양화 평가)

  • Lee, Heung Soo;Chung, Se Woong;Choi, Jung Kyu;Shin, Sang Il
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.741-749
    • /
    • 2008
  • Many small-scale ponds that serve as ecological habitat, recreation and irrigation are faced to eutrophication problem, which causes aesthetic nuisance and ultimately loss of their functions. Thus accurate evaluation of the trophic state of these ponds is essential to provide rational information to the stakeholders so that they can develop effective management actions. In this study, the trophic state of a small pond (Wonheung) that experiencing water quality degradation due to vicinity land development was assessed using various Trophic State Indexes (TSIs) and statistical analysis including Principal Components Analysis (PCA) based on the field monitoring data obtained from May to December, 2007. The results showed that the pond is under eutrophic state with average total nitrogen (T-N) and total phosphorus (T-P) concentrations of $708.1{\mu}g/L$ and $59.3{\mu}g/L$, respectively. The factor loading plot obtained from PCA showed distinct two influencing factors, PC 1 and PC 2. PC 1 was grouped by T-P, Chlorophyll a (Chl-a), suspended solids (SS), TN/TP ratio, and transparency that all strongly related to the eutrophication state, while PC 2 by temperature, conductivity, dissolved oxygen (DO) and turbidity that explains the seasonal water quality variations. The limiting factor was identified as light rather than phosphorus by both T-N/T-P ratio and TSI indexes analysis. The results and methodology adopted in this study can be used for water quality assessment for other small ponds and lakes.

Estimation of Nutrients Reduction Rates to Prevent Eutrophication on the Hwaong Reservoir (화옹호의 부영양화 방지를 위한 영양염류 삭감률 산정)

  • Kim, Mi-Ah;Kim, Young-Hee;Lee, Hong-Keun;Hwang, Dae-Ho;Kim, Ji-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2004
  • In this study, the reduction rates of nutrients were suggested to prevent eutrophication on the Hwaong reservoir in the year of 2008 and 2012. With EPA's WASP6 model, future water quality were simulated. In 2008, T-N would be 1.36mg/L and T-P 0.100mg/L on average. ; In 2012, T-N 2.66mg/L and T-P 0.128mg/L. With all the water quality management plans that the government authorities are carrying out, these results indicate that the reservoir would be reach the eutrophic or hypertrophic state according to the Vollenweider's trophic states. Therefore, the Hwaong reservoir requires additional plans for nutrients management. Here, the target water quality to prevent eutrophication of the reservoir sets into mesotrophic state ; T-N 0.475mg/L and T-P 0.02mg/L.(median of Vollenweider index for mesotropphic state) The reduction rates of nutrients on Namyang and Eoeun streams were estimated with uniform treatment method to meet the goal. The results showed that nutrients from two streams should be reduced up to 78% in 2008, and 84% in 2012. Since the ratio of T-N/T-P would be higher than 16 at target years, T-N was not considered as the limiting factor and was not reduced.

Water Quality in Artificial Reservoirs and Its Relations to Dominant Reservoir Fishes

  • Hwang, Yoon;Han, Jeong-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.441-451
    • /
    • 2009
  • The major objectives of this study were to evaluate trophic state of reservoirs using major water quality variables and its relations in terms of trophic guilds and tolerance guilds with dominant lentic fishes. For this study, we selected 6 artificial reservoirs such as Namyang Reservoir ($N_yR$), Youngsan Reservoir ($Y_sR$), Daechung Reservoir ($D_cR$), Chungju Reservoir ($Cj_R$), Chungpyung Reservoir ($C_pR$), and Paldang Reservoir ($P_dR$), and collected fish during 2000~2007 along with data analysis of water quality monitored by the ministry of environment, Korea. Biological oxygen demand (BOD) and chemical oxygen demand (COD), indicators of organic matter pollution, varied depending on types of the reservoirs and the spatial patterns in terms of trophic gradients were similar to patterns of nutrients, Secchi depth and chlorophyll-a. Analysis of trophic state index (TSI) showed that reservoirs of $D_cR$ and $C_jR$ were mesotrophy and other 4 reservoirs were eutrophic state. The relations of trophic relations showedthat TSI (Chl-a) had a positive linear function [TSI (CHL)=0.407 TSI (TP)+28.2, n=138, p<0.05] with TSI (TP) but had a weak relation with TSI (TN). Also, TSI (TP) were negatively correlated ($R^2=0.703$, p<0.05) with TSI (SD), whereas TSI (TN) was not significant (p>0.05) relations with TSI (SD). Tolerance guilds of lentic fishes, based on three types of the reservoirs, reflected the exactly water quality in the TN, TP, BOD, and COD, and similar trends were shown in the fish feeding/trophic guilds.

Submarine Environmental Characteristics of Porewater around Deok-Jeok Island, Yellow Sea (황해 덕적도 주변 해양 공극수의 환경특성)

  • 한명우;박용철
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.77-88
    • /
    • 1992
  • Distribution patterns of the chemical species, contained or dissolved in the sediments and porewater, were studied from the submarine environments around Deok-Jeok Island, Yellow Sea. The sediments in the study area are predominantly composed of medium to coarse sands, and consequently of very low organic carbon (0.003%) -0.26%o dry weight sediments). As opposed to the strong enrichment of porewater with nutrients and heavy metals in the ordinarily muddy, organic-rich sediillents, the porewater enrichment is not intense in this sandy, organic-poor sediments: porewater phosphate is enriched to the maximum of only seven (average two) times over that in the bottom water. Concentrations of the heavy metals dissolved in porewater show a bit greater enrichment than the nutrient: Zn shows the lowest enrichment (7 times that of the bottom water) and Mn the highest (450 times that of the bottom water). However, these enrichments of the chemical species in porewater are the natural consequences of decomposition of the organic matter in sediments, and still fall short in the magnitude of those in the muddy, organic-rich sediments. Mining of the sands in the study area may pose a threat to the seawater quality as it causes a large scale porewater discharge to the bottom water. The additional supply of the nutrients by this discharge may develop an eutrophic state and, in consequence, an excessive nitrification of the water column. Since the residence times of the nutrients are much longer than those of the heavy metals, a long-term monitoring of the concentration changes in the porewater nutrients is very important to assess the potential deterioration of the seawater associated with the sand mining in the study area.

  • PDF

Assessment of the physico-chemical quality and extent of algal proliferation in water from an impounding reservoir prone to eutrophication

  • Ballah, Mohun;Bhoyroo, Vishwakalyan;Neetoo, Hudaa
    • Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.22-30
    • /
    • 2019
  • Background: Piton du Milieu (PdM) impounding reservoir is suspected to be eutrophic based on the elevated level of orthophosphate and nitrate. Water supplies from three adjacent rivers are primarily thought to contribute to the nutrient enrichment of the reservoir. It is also suspected that there is leaching of orthophosphate, nitrate and organic matter into the rivers during rainfall events and also as a result of anthropogenic activities within the catchment area. The aim of this study was to ascertain the impact of nutrient loading on the water quality of PdM water and on the population of freshwater microalgae in the reservoir. The enumeration and identification of algae from PdM were performed by differential interference contrast microscopy. Dissolved oxygen (DO) and pH were determined by electrometric methods, whereas nutrient levels, silica and total organic carbon (TOC) were determined by instrumentation techniques. Results: Annual mean orthophosphate, nitrate and total organic carbon input from the three feeders within the catchment area of PdM reached levels as high as 0.09 mg/L, 0.4 mg/L and 2.62 ppm respectively. Over a 12-month period, mean TOC concentration in the reservoir was 2.32 ppm while the mean algal cell count was 4601 cells/mL. The dominant algal species identified were Oscillatoria, Cyclotella, Navicula and Cosmarium. Conclusion: This study highlights the trophic state of the reservoir water and clearly points to the need for constant monitoring in order to avoid the occurrence of an impending harmful algal bloom.

Analysis of the Trophic Characteristics of the SoOak River Watershed Using the Korean Trophic State Index (한국형 부영양화지수를 이용한 소옥천 유역의 부영양 특성 분석)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin;Seo, Heeseung
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.330-337
    • /
    • 2018
  • The Korean Eutrophication Index($TSI_{ko}$) was estimated using water quality monitoring data of eight main sites in the SoOoak River watershed. The environmental characteristics of rivers were classified and evaluated using the $TSI_{ko}$ for each factor calculated by COD, T-P, and Chl-a. There is a good condition for the algae to grow due to shallow water depth, inflow of non-point source pollution during rainfall, influx of sewage treatment effluent and increase of residence time. It shows trophic state more than mesotrophication year round. Especially, in case of Chuso point, which is the inflow point of Daecheong Lake, the water quality deteriorated due to hydraulic characteristics and showed the eutrophic state. Therefore, it is necessary to establish the measures to improve the water quality through the precise monitoring of SoOak River.

Analysis of a Spatial Distribution and Nutritional Status of Chlorophyll-a Concentration in the Jinyang Lake Using Landsat 8 Satellite Image (Landsat 8호 영상을 이용한 진양호의 클로로필 a 농도의 공간분포와 영양상태 분석)

  • Jang, Min Won;Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The purpose of this study is to evaluate the nutritional status of Lake Jinyang using Landsat 8 satellite image band correlated with chlorophyll-a, which is also related to algae proliferation. We selected 20 Landsat 8 images dating from 2013 to 2017, taken close to water quality measurement date when the cloud cover was less than 20 %. Based on the results of the previous studies, analyzing the correlation between chlorophyll-a, and Landsat 8 satellite image band, we selected near infrared wavelength, band 5 which is closely related to the population of algae. The nutritional status was classified using the Aizaki trophic state index (TSIm). The results of the regression equation between band 5 and the observed chlorophyll-a data was used to calculate chlorophyll-a for the image data from 2013 to 2017. The concentration of chlorophyll-a ranged from 3 to $16.1mg/m^3$. To illustrate the spatial distribution of chlorophyll-a within the lake, the chlorophyll-a concentration was divided into five grades. The images on October 14, 2014 and April 10, 2016 showed relatively high value of chlorophyll-a, while January 18, 2015 and December 6, 2016 chlorophyll-a value were below 5. The images on October 14, 2014 and April 10, 2016 were rated as eutrophic status in most areas. The results of simulating water quality for the day when the water quality was not measured resulted to an approximate value for the Panmun station while the Naedong station needed some corrections.

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF