• Title/Summary/Keyword: ethylene emission

Search Result 70, Processing Time 0.04 seconds

Permeation behavior of olefin/nitrogen/hydrogen through PDMS dense and composite membranes

  • Choi, Seung-Hak;Kim, Jeong-Hoon;Shin, Hyo-Jin;Park, In-Jun;Roh, Jae-Sung;Kang, Deuk-Joo;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.137-138
    • /
    • 2003
  • The worldwide annual production of polyolefins amounted to 60 million tons in 2000. During the process, 1-2 wt% of the olefin monomers have been emitted and flared into the air, causing the huge energy consumption and severe carbon dioxide emission. Recently, membrane process has been proved to be the most competitive among other separation processes in terms of cost of equipments, energy consumption and safety in this application. The performance of membrane process highly depends on the membrane properties and thus, it is very important to develop good membrane materials and composite membranes. We prepared PMDS dense and composite membranes and studied basic permeation behaviors of a series of olefins(ethylene, propylene, 1 -butylene), nitrogen and hydrogen as model gases.

  • PDF

Effect of Aminoethoxyvinylglycine Treatment on Lipid Material Changes in 'Hongro' Apples (Aminoethoxyvinylglycine 처리가 '홍로' 사과 표피의 지질물질 변화에 미치는 영향)

  • Jun, YoungKeun;Kang, InKyu;Choi, Cheol
    • Current Research on Agriculture and Life Sciences
    • /
    • v.33 no.1
    • /
    • pp.33-35
    • /
    • 2015
  • This study investigated the effect of AVG treatment on lipid material changes in the 'Hongro' apple epidermis. The internal ethylene concentration in 'Hongro' apples treated with $200mL{\cdot}L^{-1}$ AVG and stored at room temperature after harvest was significantly lower than that in 'Hongro' apples treated with $20mL{\cdot}L^{-1}$ Ethephon and the controls. During the same period, the emission of wax after the AVG treatment was also significantly lower than that after the other treatments. In conclusion, treatment with $220mL{\cdot}L^{-1}$ AVG two weeks before harvesting was found to be effective in improving and maintaining the quality of the 'Hongro' apples. Reducing the level of internal ethylene can delay the aging of fruit and inhibit the accumulation of wax in the fruit epidermis.

Fabrication of Biomass Based Polyethylene Furoate Nanofiber by Electrospinning (전기방사법을 이용한 바이오매스 유래 polyethylene furoate 나노섬유 제조에 관한 연구)

  • Choi, Hyun-Jin;Kim, Sun Hee;Kim, Beak-Jin;Kim, Sang Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4024-4031
    • /
    • 2014
  • Nanofibers have attracted significant interest in many industrial fields because their high surface area and porosity. In addition, the continued use of petrochemical based polymers has caused the depletion of oil resources and accelerated the greenhouse effect by the emission of carbon dioxide. Therefore, biomass-based polymer has become a very important environmentally friendly alternative. In this study, nanofibers were fabricated by an electrospinning process using biomass based PEF(polyethylene furoate) prepared by the polymerization of 2,5-furandicaboxylic acid and ethylene glycol. Furthermore, the electrospun nanofiber was strongly affected by various parameters, such as the solvent, polymer concentration and electric field. In conclusion, nanofibers with an average fiber diameters of 200 - 700 nm could be prepared at polymer concentration of 15 wt% using HFIP, and their fiber diameter increased with increasing electric field.

Syntheses and Characterization of UV-curable Polyurethane Acrylates with Eco-friendly Polyols (친환경 폴리올을 이용한 광경화형 폴리우레탄 아크릴레이트의 합성)

  • Lee, Bong;Kim, Yeong Woo;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.140-145
    • /
    • 2019
  • In view of environmental considerations, the control of carbon dioxide (CO2) and volatile organic compounds (VOCs) is one of important issues in the film and coating industries. Therefore, UV-curable system has been developed due to minimize emissions of VOCs and reduce CO2 emission due to low energy consumption from fast curing. Also, biodegradable polymers economically are attractive because of environmental and economic concerns associated with huge waste plastics. In this study, UV-curable polyurethane acrylates with different compositions of biodegradable polylactide (PLA) diol and poly(ethylene glycol) as diols were synthesized and curing reaction of their end-capped acrylates was performed by UV exposure. Tensile strength, elongation, and Tg of the UV-cured polyurethane acrylates increased with PLA diol content in the diol while their hydrophilicity and thermal stability increased with the PEG content. These results indicated a property of UV-cured polyurethane acrylates could be controlled by environment-friendly diols.

Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 폴리에틸렌글리콜계 폴리이미드 공중합체 비대칭 평판형 분리막의 제조 및 기체 투과 특성평가)

  • Park, Jeong Ho;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2015
  • In this study, we synthesized polyimide with high carbon dioxide gas transport property using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,3,5,6-tetramethyl-1,4-phenylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and then we calculated solubility parameter of synthesized polymer and non-solvent phase separation coefficient to determine proper solvent for preparation of asymmetric membrane, also we measured the viscosity of the polymer solution to check polymer contents in membrane solution and prepare asymmetric membrane with $LiNO_3$ additives. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. We confirmed that the carbon dioxide permeance of the membrane increased and the selectivity showed little change with decreasing of the volatile solvent contents.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

Synthesis and Photoluminescence Properties of Red-Emitting (Y,Al)VO4:Eu3+ Nanophosphors (적색 발광 (Y,Al)VO4:Eu3+ 형광체 나노입자의 합성과 발광 특성)

  • Seo, Jung-Hyun;Choi, Sung-Ho;Nahm, Sahn;Jung, Ha-Kyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Red-emitting $Eu^{3+}$-activated $(Y_{0.95-x}Al_x)VO_4$ (0 < x $\leq$ 0.12) nanophosphors with the particle size of ~30 nm and the high crystallinity have been successfully synthesized by a hydrothermal reaction. In the synthetic process, deionized water as a solvent and ethylene glycol as a capping agent were used. The crystalline phase, particle morphology, and the photoluminescence properties of the excitation spectrum, emission intensity, color coordinates and decay time, of the prepared $(Y_{0.95-x}Al_x)VO_4:Eu^{3+}$ nanophosphors were compared with those of the $YVO_4:Eu^{3+}$. Under 147 nm excitation, $(Y_{0.95-x}Al_x)VO_4$ nanophosphors showed strong red luminescence due to the $^5D_0-^7F_2$ transition of $Eu^{3+}$ at 619 nm. The luminescence intensity of $YVO_4:Eu^{3+}$ enhanced with partial substitution of $Al^{3+}$ for $Y^{3+}$ and the maximum emission intensity was accomplished at the $Al^{3+}$ content of 10 mol%. By the addition of $Al^{3+}$, decay time of the $(Y,Al)VO_4:Eu^{3+}$ nanophosphor was decreased in comparison with that of the $YVO_4:Eu^{3+}$ nanophosphor. Also, the substitution of $Al^{3+}$ for $Y^{3+}$ invited the improvement of color coordinates due to the increase of R/O ratio in emission intensity. For the formation of transparent layer, the red nanophosphors were fabricated to the paste with ethyl celluloses, anhydrous terpineol, ethanol and deionized water. By screen printing method, a transparent red phosphor layer was formed onto a glass substrate from the paste. The transparent red phosphor layer exhibited the red emission at 619 nm under 147 nm excitation and the transmittance of ~80% at 600 nm.

Preparation and Properties of Eu3+ Doped Y2O3 Nanoparticles with a Solvothermal Synthesis Using the Ethylene Glycol (에틸렌 글리콜을 이용하여 용매열 합성으로 Eu3+가 도핑된 Y2O3 나노 입자의 제조 및 특성)

  • 신수철;조태환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.709-714
    • /
    • 2003
  • Eu doped $Y_2$ $O_3$ nanoparticles were prepared with the solvothermal synthesis using the ethyleneglycol solvent at 20$0^{\circ}C$ for 3-5 h and then annealed in air at 1000-140$0^{\circ}C$ for 2-4 h. The X-ray diffraction pattern of annealed crystals at 100$0^{\circ}C$ for 2 h could be indexed as pure cubic cell of $Y_2$ $O_3$ phase with lattice parameters a=10.5856 $\AA$ which is very close to the reported data (JCPDS Card File, 41-1105 a=10.6041 $\AA$). Average size of prepared phosphor particles have about 100 nm, which were spherical morphology. The phosphor particle sizes decreased and the emission intensity increased at the annealing temperature. Though PL spectrum analysis, the 3% Eu doped $Y_{2-x}$ $O_3$:E $u_{x}$ $^{3+}$(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum at 611 nm wavelength.

A Study on Measurements of PM Size in a Single Cylinder Common-rail Diesel Engine Exhaust using LII Method (레이저 유도 백열법을 이용한 단기통 커먼레일 디젤 엔진 배기에서의 PM 크기 계측에 관한 연구)

  • Chun, Hong-Sik;Kim, Hui-Jun;Ryu, Hoon-Chul;Park, Jong-Il;Hahn, Jae-Won;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.95-102
    • /
    • 2006
  • Recently particulate matter(PM) emission regulations are becoming more strict for diesel engines. There is increasing interest for measuring not only concentration but also size of the particles. Laser-induced incandescence (LII) has emerged as a promising technique for measuring particle volume fraction and size. In this study, the Simple Time Resolved-LII method was applied to exhaust of Ethylene diffusion flame and diesel engine exhaust for measuring soot and PM size. The particle size data from LII technique were calibrated using Field Emission Scanning Electron Microscope(FE-SEM) and Transmission Electron Microscope(TEM) photographs. In diesel engine experiments for particle size measurement, results from LII measurement are in a good agreement with those from TEM photograph, and difference between two measurements was less than 16%.

Soot Primary Particle Size Measurement in a Ethylene Diffusion Flame Using Time-Resolved Laser-Induced Incandescence (2차원 시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 입자 크기 측정)

  • Shon, Moo-Kang;Moon, Gun-Feel;Kim, Gyu-Bo;Lee, Jong-Ho;Jeong, Dong-Soo;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1140-1145
    • /
    • 2004
  • Laser-induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles in flame environments. This technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application. The evaluation of the temporal decay of the laser-induced incandescence (LII) signal from soot particles is introduced as a technique to obtain two-dimensional distributions of particle sizes and is applied to a laminar diffusion flame. This novel approach to soot sizing exhibits several theoretical and technical advantages compared with the established combination of elastic scattering and LII, especially as it yields absolute sizes of primary particles without requiring calibration. With this technique a spatially resolved 2-D measurement of soot primary particle sizes is feasible in a combination process form the ratio of emission signals obtained at two delay times after a laser pulse, as the cooling behavior is characteristic of particle size.

  • PDF