• Title/Summary/Keyword: ethylacetate-toluene system

Search Result 5, Processing Time 0.017 seconds

A Study on the Recovery of Acetonitrile in the Process of Manufacturing Acrylonitrile (아크릴로니트릴 제조공정에서 아세토니트릴 회수에 관한 연구)

  • 박동원;최성욱;김영일
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.31-36
    • /
    • 1999
  • In the process of manufacturing acrylonitrile, azeotrope of water-acetonitrile is formed as by-product. To1uene-ethylacetate mixture was selected as solvent to determine the liquid-liquid equilibria for to1uene(l)-water(2)-acetomtrile(3)-ethyjacetate(4) system. The experimental he-line data were correlated with the UNIFAC model. The distribution and selectivity for quaternary system was also studied.

  • PDF

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Ternary System by Means of Solution Thermodynamics and MRSM Model - (가연성물질의 폭발한계에 관한 연구 - 용액열역학 및 MRSM 모델에 의한 3성분계 폭발한계 -)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.91-97
    • /
    • 2005
  • The research on the explosive limits is one of fundamental fields of combustion process, and information on the explosive limits of mixture of fuel and oxidant, with or without additives, is very important for the prevention in industrial fire and explosion accidents. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Batten, Le Chatelier and MRSM(modified response surface methodology) model. In this study, the reference values of lower explosive limits(LEL) of the ethanol+toluene+ethylacetate system were compared with the calculated values by using the solution thermodynamics and the MRSM model, respectively. The values calculated by the proposed equations were a good agreement with literature data within a few percent. By means of this methodology, it is possible to evaluate reliability of experimental data of the lower explosive limits of the flammable mixtures. Also, from given results, it is possible to predict explosive limits of the other flammable liquid mixtures used in the chemical process by the use of the proposed equations.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

A Study on the Recovery of Acetonitrile in the Process of Acrylonitrile (Acrylonitrile 제조공정에서 Acstonitrile의 회수에 관한 연구)

  • Lee, Jin-Woo;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1016-1023
    • /
    • 1994
  • In process of manufacturing acrylonitrile azeotrope of acetonitrile-water was come into being as by-product. For the purpose of recovering acetonitrile through solvent extraction process benzene, toluene, o-xylene, ethylacetate and monochlorobenzene as solvents were selected in order to separate acetonitrile from azeotrope of acetonitrile-water. In this study liquid-liquid equilibrium data were determined and consistency of the experimental data was investigated. The tie line and plait point for solvent(1)-water(2)-acetonitrile(3) system were determined at $25^{\circ}C$. The parameters in the NRTL, UNIQUAC and modified UNIQUAC model were predicted, distribution coefficient and selectivity of each solvent were determined respectively.

  • PDF