• Title/Summary/Keyword: ethanol tolerance

Search Result 116, Processing Time 0.026 seconds

Isolation of Clostridium thermocellum Producing High Activity of Cellulase (Cellulase의 생산력이 뛰어난 Clostridium thermocellum의 분리)

  • 이호섭;최병일;이용현;박용복;하지홍
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.184-188
    • /
    • 1991
  • Three strains of Clostridium thermocellum, JH01, JH20 and JH30 which are capable of producing ethanol directly from cellulose were isolated from composts. The morphological, cultural and physiological properties of the strains were similar to the ATCC type strain, except for carbon source utilization and degree of ethanol tolerance. All of the three isolates could use glucose and maltose as a sole carbon source and two of them, strains of JH01 and JH20 were three times more tolerant to ethanol than the ATCC type strain. Cellulases secreted by the isolated strains had higher activities than those of the ATCC type strain.

  • PDF

Studies on the Reactive Characteristics of Immobilized Saccharomyces cerevisia in Ethanol Production (Immobilized Saccharomyces cerevisia의 반응특성에 관한 연구)

  • 김성기
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.84-94
    • /
    • 1992
  • In an attempt to develop the immobilized biocatalysts based on immobilized Saccharomyces cerevisiae, immobilized yeast was investigated with respect to the conditions affected to ethanol productivities. Saccharomyces cerevisiae was immobilized in the form of the beads by magnetic-calcium alginate, non magnetic-calcium alginate and acrylamide polymerization. Magnetic immobilized yeast, nonmagnetic immobilized yeast and polyacrylamide immobilized yeast were compared in respect of their pH stability, thermostability, heat tolerance, the relation between the concetration of native yeast and retained activity of immobilized yeast, the activity depending on bead size of immobilized yeast, and the effects of magnesium and cobalt on the activities. The more small bead had retained the higher activity for the three kinds of immobilized yeast. In case of 1.0mm diameter of beads, the retained activity was 40~50% for the all groups. The pH stability profile for the immobilized yeast showed a broad range of optimun activity while the native yeast gave a sharp pick for its optimun pH value. The thermostability was at the range of 25~55$^{\circ}$C for the immobilized yeast groups. It was investigated that the influent magnesium and cobalt concentration, and the relative activity have an influent on heat tolerance at steady state. Both protein content released from immobilized yeast and activity of immobilized yeast were changed after activation of immobilized yeast cell.

  • PDF

Screening and Characterization of the High-Alcohol Producing Saccharornyces cerevisiae Dl (고농도 알콜발효효모 Saccharomyces cerevisiae D1의 분리 및 특성)

  • 양지영;박경호;백운화;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.511-516
    • /
    • 1990
  • A high-alcohol producing yeast strain had sugar and alcohol tolerance was isolated from soil and identified as Saccharomyces cerevisiae Dl according to the Lodder's yeast taxonomic studies. On investigation of the characteristics of the strain, it could grow in 60% glucose, within 15% ethanol and in the YPD medium containing 2.0 mM copper. It had 39.1% the inhibition rate of fermentation efficiency and 8% viability after 2 days in the YPD medium containing 15% ethanol. Its optimum initial pH, growth temperature, initial glucose concentration for the production of alcohol showed pH 4.5, $30^{\circ}C$, and 30%, respectively. Saa:hwomyce8 mvisiae Dl produced 14.0% (wlv) alcohol when incubated at $30^{\circ}C$, with orbital shaking 150 rpm for 72 h in a medium (pH 4.5) containing 30% (wfv) glucose.

  • PDF

Saccharomyces cerevisiae KNU5377 with Multiple Stress Tolerance and its Potential as a Worldwide On-site Industrial Strain for Alcohol Fermentation

  • Paik, Sang-Kyoo;Ingnyol Jin;Yun, Hae-Sun;Park, Sae-Hun;Shin, Seong-Chul;Kim, Jae-Wan;Shin, Ki-Sun;Lee, Jung-Sook;Park, Yong-Ha
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.425-429
    • /
    • 2002
  • Saccharomyces cerevisiae KNU5377 was examined to assay the recovering capacity against heat and other stressors. Along with a particular fermentation ability that is able to produce ethanol even at high temperature such as $40^{\circ}C$ with a comparable rate to the fermentation at $33^{\circ}C$, this strain also exhibited higher viability than a reference strain owing to its own thermotolerance that conferred the survival after the severe heat shock at $60^{\circ}C$ for 30 minutes. Furthermore, this strain showed outstanding tolerances against $H_2O_2$, ethanol and some chemical compounds. But, especially due to the thermotolerance, this strain has been suspected of other species of yeast. However, ITS (internally transcribed spacer) 1 and 2 sequencing data confirmed this strain was a typical strain of S. cerevisiae. The outstanding tolerances to various environmental stressors Indicate this S. cerevisiae KNU5377 is enough to use both as an on-site potential strain for world-wide alcohol fermentation industry and as a model strain for researches into the routes to acquire the tolerance to various stressors.

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF

Anti-Diabetic Effects of an Ethanol Extract of Cassia Abbreviata Stem Bark on Diabetic Rats and Possible Mechanism of Its Action - Anti-diabetic Properties of Cassia abbreviata -

  • Bati, Keagile;Kwape, Tebogo Elvis;Chaturvedi, Padmaja
    • Journal of Pharmacopuncture
    • /
    • v.20 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • Objectives: This study aimed to evaluate the hypoglycemic effects of an ethanol extract of Cassia abbreviata (ECA) bark and the possible mechanisms of its action in diabetic albino rats. Methods: ECA was prepared by soaking the powdered plant material in 70% ethanol. It was filtered and made solvent-free by evaporation on a rotary evaporator. Type 2 diabetes was induced in albino rats by injecting 35 mg/kg body weight (bw) of streptozotocin after having fed the rats a high-fat diet for 2 weeks. Diabetic rats were divided into ECA-150, ECA-300 and Metformin (MET)-180 groups, where the numbers are the doses in mg.kg.bw administered to the groups. Normal (NC) and diabetic (DC) controls were given distilled water. The animals had their fasting blood glucose levels and body weights determined every 7 days for 21 days. Oral glucose tolerance tests (OGTTs) were carried out in all animals at the beginning and the end of the experiment. Liver and kidney samples were harvested for glucose 6 phosphatase (G6Pase) and hexokinase activity analyses. Small intestines and diaphragms from normal rats were used for ${\alpha}-glucosidase$ and glucose uptake studies against the extract. Results: Two doses, 150 and 300 mg/kg bw, significantly reduced the fasting blood glucose levels in diabetic rats and helped them maintain normal body weights. The glucose level in DC rats significantly increased while their body weights decreased. The 150 mg/kg bw dose significantly increased hexokinase and decreased G6Pase activities in the liver and the kidneys. ECA inhibited ${\alpha}-glucosidase$ activity and promoted glucose uptake in the rats' hemi-diaphragms. Conclusion: This study revealed that ECA normalized blood glucose levels and body weights in type 2 diabetic rats. The normalization of the glucose levels may possibly be due to inhibition of ${\alpha}-glucosidase$, decreased G6Pase activity, increased hexokinase activity and improved glucose uptake by muscle tissues.

Ant-Obesity Effect of Coriandrum sativum L. Ethanol Extract in High Fat-Induced Obesity Animal Model (고수 에탄올 추출물의 고지방식이 비만 동물모델에서의 항비만효과)

  • Rak Won Lee;Soon Ah Kang
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.296-308
    • /
    • 2023
  • This study investigated the anti-obesity effects of Coriandrum sativum L. ethanol extracts in a high fat diet-induced obesity model (DIO). We confirmed the anti-obesity effects by analysing the expression of the related proteins, weight gain, dietary intake, dietary efficiency, blood biochemistry, histological analysis and western blot analysis. After oral administration of Coriandrum sativumL. ethanol extracts at concentrations of 250 and 500 mg/kg, a significant improvement in dietary efficiency, reduction in weight gain, triglycerides, total cholesterol and LDL-cholesterol in blood lipid was observed for 8 weeks. In addition, improvement in blood glucose and metabolism confirmed through glucose tolerance test was observed. Further, the concentration of alanine transaminase (ALT) in blood was significantly decreased, which improved the fatty liver caused by high-fat diet intake as confirmed by liver tissue analysis. This phenomenon was confirmed to decrease the expression of fat accumulation-related PPARγ and FAS protein in the liver tissue. Especially, it is believed that FAS, a liposynthetic enzyme, has a stronger inhibitory effect than PPARγ. Therefore, Coriandrum sativum L. ethanol extract is thought to improve obesity by reducing blood lipids levels, improving glucose metabolism and inhibiting synthesis of the fat that accumulates in the liver in high-fat diet-induced obesity animal models.

Effects of heat and ethanol shock on the membrane proteins of Vibrio vulnificus (열 및 에탄을 shock이 Vibrio vulnificus의 막단백질에 미치는 영향)

  • Heo, Moon-Soo;Jung, Cho-Rok
    • Journal of fish pathology
    • /
    • v.12 no.2
    • /
    • pp.89-99
    • /
    • 1999
  • New sixteen heat shock proteins (Hsps) and ten ethanol shock proteins were appeared on the analysis with SDS-PAGE when cultivation temperature for the Vibrio vulnifrcus ATCC 27562 strain was shifted-up to $42^{\circ}C$ from $30^{\circ}C$ for 20 mins and treated with of 6% ethanol for 10 mins, respectively. Even the induction of thermotolerance in V. vulnificus was coincided with the induction of Hsps if the pre-shock was adjusted to thermal temperature. Outer membrane proteins (OMPs) that were purified from the membrane of cells after heat shock showed more immunodominant pattern to the immunized rabbit anti-V. vulnificus O serum in enzyme-linked immunosorbent assay (ELISA). On the western immunoblot analysis it was confirmed that both 62 kDa IMP and 69 kDa OMP in the Hsps and 48 kDa IMP a major OMP in the ethanol shock proteins were reacted with rabbit anti-V. vulnificus O sera. Agglutination titer of the heat shocked V. vulnificus with rabbit anti-V. vulnificus O serum was higher than that of the untreated bacteria.

  • PDF

Effect of soybean meal on the alcohol fermentation of sugar-alcohol-tolerant Saccharomyces cerevisiae (내당 내알콜성 Saccharomyces cerevisiae의 알콜 발효에 미치는 soybean meal의 영향)

  • Rho, Min-Jeong;Park, Keung-Ho;Paik, Un-Hwa;Yu, Ju-Hyun
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.61-66
    • /
    • 1991
  • In order to improve the productivity of ethanol by sugar-alcohol-tolerant Saccharomyces cerevisiae D1, the effect of addition of soybean meal on the alcohol fermentation was investigated. The addition of soybean meal led tn the increase of the ethanol productivity and viable cell concentration. Increasing the mont of soybean meal increased the number of viable cells and the consumption percentage of glucose. The water-soluble fraction of soybean meal was nearly as effective as whole-soybean meal, whereas the lipidic fraction had no positive effect. The addition of 4% soybean meal increased the rate of ethanol production regardless of the initial concentrations of glucose. The rate of glucose consumption fermenting a soybean meal supplemented medium was higher than possible in a non-supplemented medium, either in the absence or in the presence of ethanol. But the percentage of ethanol inhibition of the glucose consumption rate was identical for supplemented md unsupplemented media. The increase of final ethanol concentration could not be attributed In an increase of ethanol tolerance of yeast cells but to the satisfaction of nutritional deficiencies.

  • PDF

Production and Characterization of Ethanol- and Protease-Tolerant and Xylooligosaccharides-Producing Endoxylanase from Humicola sp. Ly01

  • Zhou, Junpei;Wu, Qian;Zhang, Rui;Yang, Yuying;Tang, Xianghua;Li, Junjun;Ding, Junmei;Dong, Yanyan;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • This paper reports the production and characterization of crude xylanase from the newly isolated Humicola sp. Ly01. The highest (41.8 U/ml) production of the crude xylanase was obtained under the optimized conditions (w/v): 0.5% wheat bran, 0.2% $KH_2PO_4$, and 0.5% peptone; initial pH 7.0; incubation time 72 h; $30^{\circ}C$; and 150 rpm. A considerable amount of the crude xylanase was induced using hulless barley bran or soybean meal as the carbon source, but a small amount of the enzyme was produced when supplementary urea was used as the nitrogen source to wheat bran. The crude xylanase showed apparent optimal cellulase-free xylanase activity at $60^{\circ}C$ and pH 6.0, more than 71.8% of the maximum xylanase activity in 3.0-30.0% (v/v) ethanol and more than 82.3% of the initial xylanase activity after incubation in 3.0-30.0% (v/v) ethanol at $30^{\circ}C$ for 2 h. The crude xylanase was moderately resistant to both acid and neutral protease digestion, and released 7.9 and 10.9 ${\mu}mol/ml$ reducing sugar from xylan in the simulated gastric and intestinal fluids, respectively. The xylooligosaccharides were the main products of the hydrolysis of xylan by the crude xylanase. These properties suggested the potential of the crude enzyme for being applied in the animal feed industry, xylooligosaccharides production, and high-alcohol conditions such as ethanol production and brewing.