• 제목/요약/키워드: etching rate

Search Result 790, Processing Time 0.033 seconds

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

Evaluation of Dicing Characteristics of Diamond Micro-blades with Cu/Sn Binder Including Etched WS2 Particles (표면 부식 처리한 WS2 입자를 첨가한 Cu/Sn계 다이아몬드 마이크로 블레이드의 절삭특성)

  • Kim, Song-Hee;Jang, Jaecheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • $WS_2$ particles were added to micro-diamond blades with Cu/Sn binding metal as lubricants to improve cutting efficiency. It was found in previous works that the added $WS_2$ lubricant could reduce remarkably the momentary energy consumption during dicing tests but increased wear rate slightly owing to weak bonding between lubricant particles and bond metals. In the present work, the surface of $WS_2$ lubricant particles were etched for activating the surface of $WS_2$ particles that provide even distribution of particles during powder mixing process and improvement of wetting at the interfaces between $WS_2$ particles and molten Cu/Sn bond metals during pressurized sintering so that could provide the improved strength of micro-blades and result in extended life. Chipping behavior of workpiece with the types of micro-blades including $WS_2$ were compared because it is important in semiconductor and micro-packaging industries to control average roughness and straightness of sliced surface which is closely related with quality.

A Study on Wet Etch Behavior of Zinc Oxide Semiconductor in Acid Solutions

  • Seo, Bo-Hyun;Lee, Sang-Hyuk;Jeon, Jea-Hong;Choe, Hee-Hwan;Lee, Kang-Woong;Lee, Yong-Uk;Seo, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.926-929
    • /
    • 2007
  • A significant progress has been made in the characterization of zinc oxide (ZnO) semiconductor as a new semiconductor layer instead of amorphous Si semiconductor used in thin film transistor due to its high electron mobility at low deposition temperature which is quite suitable for flexible display and OLED devices. The wet pattering of ZnO is another important issue with regard to mass production of ZnO thin film transistor device. However, the wet behavior of ZnO thin film in aqueous wet etching solutions conventionally used un TFT industry has not been reported yet, in this work, wet corrosion behavior of RF magnetron sputtered ZnO thin film in various wet solutions such as phosphoric and nitric acid solutions was studied using by electrochemical analysis. The effects of deposition parameters such as RF power and oxygen partial pressure on corrosion rate are also examined.

  • PDF

Optimization of Fused Quartz Cantilever DRIE Process and Study on Q-factors (비정질 수정 캔틸레버의 식각 공정 최적화 및 Q-factor 연구)

  • Song, Eun-Seok;Kim, Yong-Kweon;Baek, Chang-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, optimal deep reactive ion etching (DRIE) process conditions for fused quartz were experimentally determined by Taguchi method, and fused quartz-based micro cantilevers were fabricated. In addition, comparative study on Q-factors of fused quartz and silicon micro cantilevers was performed. Using a silicon layer as an etch mask for fused quartz DRIE process, different 9 flow rate conditions of $C_4F_8$, $O_2$ and He gases were tested and the optimum combination of these factors was estimated. Micro cantilevers based on fused quartz were fabricated from this optimal DRIE condition. Through conventional silicon DRIE process, single-crystalline silicon micro cantilevers whose dimensions were similar to those of quartz cantilevers were also fabricated. Mechanical Q-factors were calculated to compare intrinsic damping properties of those two materials. Resonant frequencies and Q-factors were measured for the cantilevers having fixed widths and thicknesses and different lengths. The Q-factors were in a range of 64,000 - 108,000 for fused quartz cantilevers and 31,000 - 35,000 for silicon cantilevers. The experimental results supported that fused quartz had a good intrinsic damping property compared to that of single crystalline silicon.

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coupled $Cl_2$/Ar Plasma (유도 결합 플라즈마($Cl_2$/Ar)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$ thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$ film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$ thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$ to YMnO$_3$ was 1.83. As a XPS analysis, the surface of etched CeO$_2$ thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2$/Ar Plasma (고밀도 $Cl_2$/Ar 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구)

  • 민병준;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$ thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$ thin films were etched with C1$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$ thin films is 285 $\AA$/min under C1$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$ over CeO$_2$ and $Y_2$O$_3$ are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$ film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF

Damages of etched BST films by high density plasmas (고밀도 플라즈마에 의한 BST 박막의 damage에 관한 연구)

  • 최성기;김창일;장의구;서용진;이우선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.45-48
    • /
    • 2000
  • High dielectric (Ba,Sr)TiO$_3$ thin films were etched in an inductively coupled plasma (ICP) as a function of C1$_2$/Ar gas mixing ratio. Under Cl$_2$(20)/Ar(80), the maximum etch rate of the BST films was 400$\AA$/min and selectivities of BST to Pt and PR were obtained 0.4 and 0.2, respectively. We investigated the etched surface of BST by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and x-ray diffraction (XRD). From the result of XPS analysis, we found that residues of Ba-Cl and Ti-Cl bonds remained on the surface of the etched BST for high boiling point. The surface roughness decreased as Cl$_2$ increases in Cl$_2$/Ar plasma because of non-volatile etching products. This changed the nature of the crystallinity of BST. From the result of XRD analysis, the crystalliility of etched BST film maintained as similar to as-deposited BST under Ar only and Cl$_2$(20)/Ar(80). However, (100) orientation intensity of etched BST film abruptly decreased at Cl$_2$ only plasma. It was caused that Cl compounds were redeposited on the etched BST surface and damaged to crystallinity of BST film during the etch process.

  • PDF

In-situ Characterization of Electrochemical and Frictional Behaviors During Copper CMP

  • Eom, Dae-Hong;Kang, Young-Jae;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.227-230
    • /
    • 2004
  • As the organic acids were added in the slurry, zeta potential of alumina was changed to negative value and IEP value was shifted from alkaline to acidic pH. In citric acid based slurry, Cu surface continuously dissolved and etching depth linearly increased. On the contrary, passivation layer was grown on Cu surface in oxalic acid based slurry. As the platen rotation speed increased, Preston coefficient decreased in both slurries. With oxalic acid based slurry, at low velocity, removal rate is high value because of high friction force compared to citric acid based slurry. As platen velocity increased, removal of Cu in citric acid based slurry became higher value than oxalic acid based slurry. Typical lubrication behaviors were observed in both slurries. As Sommerfeld number increased, COF values gradually decreased and then re-increased. It indicated that lubrication was changed to direct contact or semi-direct contact mode to hydro-lubrication mode.

  • PDF

The Study of Metal CMP Using Abrasive Embedded Pad (고정입자 패드를 이용한 텅스텐 CMP에 관한 연구)

  • Park, Jae-Hong;Kim, Ho-Yun;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF