• 제목/요약/키워드: etch damage

검색결과 104건 처리시간 0.02초

A Chemically-driven Top-down Approach for the Formation of High Quality GaN Nanostructure with a Sharp Tip

  • 김제형;오충석;고영호;고석민;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.48-48
    • /
    • 2011
  • We have developed a chemically-driven top-down approach using vapor phase HCl to form various GaN nanostructures and successfully demonstrated dislocation-free and strain-relaxed GaN nanostructures without etching damage formed by a selective dissociation method. Our approach overcomes many limitations encountered in previous approaches. There is no need to make a pattern, complicated process, and expensive equipment, but it produces a high-quality nanostructure over a large area at low cost. As far as we know, this is the first time that various types of high-quality GaN nanostructures, such as dot, cone, and rod, could be formed by a chemical method without the use of a mask or pattern, especially on the Ga-polar GaN. It is well known that the Ga-polar GaN is difficult to etch by the common chemical wet etching method because of the chemical stability of GaN. Our chemically driven GaN nanostructures show excellent structure and optical properties. The formed nanostructure had various facets depending on the etching conditions and showed a high crystal quality due to the removal of defects, such as dislocations. These structure properties derived excellent optical performance of the GaN nanostructure. The GaN nanostructure had increased internal and external quantum efficiency due to increased light extraction, reduced strain, and improved crystal quality. The chemically driven GaN nanostructure shows promise in applications such as efficient light-emitting diodes, field emitters, and sensors.

  • PDF

The Electrical Improvement of PZT Thin Films Etched into CF4/(Cl2+Ar) Plasma

  • Koo Seong-Mo;Kim Kyoung-Tae;Kim Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권6호
    • /
    • pp.223-226
    • /
    • 2004
  • The PZT thin films are one of well-known materials that has been widely studied for ferroelectric random access memory (FRAM). We etched the PZT thin films by $CF_{4}/(Cl_{2}+Ar)$ plasma and investigated improvement in etching damage by $O_{2}$ annealing. The maximum etch rate of the PZT thin films was 157 nrn/min and that the selectivity of the PZT thin films to Pt was 3.1 when $CF_{4}(30{\%})$ was added to a $Cl_{2}(80{\%})/Ar(20{\%})$ gas mixing ratio. To improve the ferroelectric properties of PZT thin films after etching, the samples were annealed for 10 min at various temperatures in $O_{2}$ atmosphere. After $O_{2}$ annealing, the remanent polarization of the asdeposited films was $34.6{\mu}/cm^{2}$ and the sample annealed at 650, 550, and $450^{\circ}C$ was 32.8, 22.3, and $18.6{\mu}/cm^{2}$, respectively. PZT thin films with $O_{2}$ annealing at $450^{\circ}C$ retained $77{\%}$ of their original polarization at 106 cycles. Also as the annealing temperature increased, the fatigue properties improved. And the leakage current was decreased gradually and almost recovered to the as-deposited value after the annealing at $450^{\circ}C$.

Fabrication and Vibration Characterization of a Partially Etched-type Artificial Basilar Membrane

  • Kang, Hanmi;Jung, Youngdo;Kwak, Jun-Hyuk;Song, Kyungjun;Kong, Seong Ho;Hur, Shin
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.373-378
    • /
    • 2015
  • The structure of the human ear is divided into the outer ear, the middle ear, and the inner ear. The inner ear includes the cochlea that plays a very important role in hearing. Recently, the development of an artificial cochlear device for the hearing impaired with cochlear damage has been actively researched. Research has been carried out on the biomimetic piezoelectric thin film ABM (Artificial Basilar Membrane) in particular. In an effort to improve the frequency separation performance of the existing piezoelectric thin film ABM, this paper presents the design, fabrication, and characterization of the production and performance of a partially etched-type ABM material. $O_2$ plasma etching equipment was used to partially etch a piezoelectric thin film ABM to make it more flexible. The mechanical-behavior characterization of the manufactured partially etched-type ABM showed that the overall separation frequency range shifted to a lower frequency range more suitable for audible frequency bandwidths and it displayed an improved frequency separation performance. In addition, the maximum magnitude of the vibration displacement at the first local resonant frequency was enhanced by three times from 38 nm to 112 nm. It is expected that the newly designed, partially etched-type ABM will improve the issue of cross-talk between nearby electrodes and that the manufactured partially etched-type ABM will be utilized for next-generation ABM research.

Glass ionomer cement 표면의 산부식 효과에 관한 연구 (THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES)

  • 한승원;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제18권1호
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF