• 제목/요약/키워드: estrogenic receptor

검색결과 77건 처리시간 0.026초

E-screen Assay 및 상경적 결합반응을 이용한 Phthalate Esters의 내분비계 장애 작용 연구 (Study on Estrogenic Activities of Phthalate Esters Using E-screen Assay and Competitive Binding Assay)

  • 한순영;한상국;문현주;김형식;이동하;김소희;김태성;박귀례
    • Toxicological Research
    • /
    • 제16권2호
    • /
    • pp.141-146
    • /
    • 2000
  • Phthalate esters are used extensively as a plasticizer in the manufacture of plastic products such as PVC bags and medical devices. Recently, phthalate esters have been shown to induce endocrine system mediated responses. However. only a Jew studies have been conducted for estrogenic activity of phthalate esters. In this study estrogenic activities of seven phthalate esters. butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), di-n-butylphthalate (DBP), diethylphthalate (DEP), di-n-pentylphthalate (DPP), di-n-propylphthalate (DPrP) and dicyclohexylphthalate (DCHP), were examined in vitro using E-screen assay and competitive binding assay. From the E-screen assay, BBP. DEHP. DBP and DEP showed weak estrogenic activity at the concentration of 5 $\mu\textrm{M}$. The relative proliferative effect (RPE) and the relative proliferative potency (RPP) were 50~70% and 0.01%. respectively, when compared with 500 pM of 17$\beta$-estradiol (E2). In competitive binding assay with the rat uterine estrogen receptor (ER), BBP and DEP showed weak binding potency [(l/$10^4$~1/$10^5$ of E2] while DEHP and DBP scarcely bound to ER. These results suggest that some phthalate esters have weak estrogenic activities in vitro.

  • PDF

염소산화에 의한 에스트로겐성 화학물질의 활성저감 (Decrease of Activity of Estrogenic Chemicals by Chlorination)

  • 이병천;이상협;龜井翼;眞炳泰基
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.98-105
    • /
    • 2005
  • The effects of chlorination on the elimination of three estrogenic chemicals such as $17{\beta}$-estradiol (E2), nonylphenol (NP) and bis-phenol A (BPA) were investigated using yeast two-hybrid assay (YTA), estrogen receptor competition assay (ER-CA), and high-performance liquid chromatography/mass spectrometer (LC/MS). Results of YTA, ECA and the analysis of LC/MS indicated that the estrogenic activity of above mentioned three endocrine disruptors were significantly reduced as the result of chlorination. The decrease in estrogenic activity paralleled with decrease in estrogenic chemicals under the influence of free chlorine. One common characteristic of estrogenic chemicals is the presence of a phenolic ring. Considering that a phenolic ring is likely to undergo some sort of transformation in aqueous chlorination solution, the above mentioned results may be applied to the rest of the other estrogenic chemicals in natural waters.

Evaluation of Estrogenic Effects of Phthalate Analogues Using in vitro and in vivo Screening Assays

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.106-113
    • /
    • 2006
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were classified in the category of "suspected" endocrine disruptors. The purpose of our study was to screen and elucidate the endocrine disrupting activity of seven phthalate analogues. E-screen assay was performed in MCF-7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) showed high estrogenic activity. Their relative proliferation efficiencies (RPE) were 109 and 106%, respectively. In vitro estrogen receptor (ER) binding assay, BBP, di-n-octyl phthalate (DOP) and dinonyl phthalate (DNP) showed weak relative binding affinity (RBA: 0.02%) compared to $17{\beta}-estradiol\;(E2)$ (RBA: 100%). In uterotrophic assay, E2 produced a significant increase, whereas four tested phthalate analogues had potential estrogenic effects in vitro did not increased in uterus weight in immature rats. From these results, we demonstrated that phthalate analogues exhibit weak estrogenic activity in vitro assays at high concentrations. Although phthalates induced an increase in MCF-7 cell proliferation by an estrogenic effect, they could not induce a uterus weight increase in vivo. From these, we may suggest that these phthalate analogues are easily metabolized to inactive forms in vivo. Further investigation in other in vitro and in vivo experimental systems might be required.

$Ginsenoside-R_{b1}$ Acts as a Weak Phytoestrogen in MCF-7 Human Breast Cancer Cells

  • Lee, Young-Joo;Jin, Young-Ran;Lim, Won-Chung;Park, Wan-Kyu;Cho, Jung-Yoon;Jang, Si-Youl;Lee, Seung-Ki
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.58-63
    • /
    • 2003
  • Ginseng has been recommended to alleviate the menopausal symptoms, which indicates that components of ginseng very likely contain estrogenic activity. We have examined the possibility that a component of Panax ginseng, $ginsenoside-R_{b1}$ acts by binding to estrogen receptor. We have investigated the estrogenic activity of $ginsenoside-R_{b1}$ in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. $ginsenoside-R_{b1}$ activated the transcription of the estrogen-responsive luciferase reporter gene in MCF-7 breast cancer cells at a concentration of 50 $\mu$M. Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of $ginsenoside-R_{b1}$ is estrogen receptor dependent. Next, we evaluated the ability of $ginsenoside-R_{b1}$ to induce the estrogen-responsive gene c-fos by semi-quantitative RT-PCR assays and Western analyses. $ginsenoside-R_{b1}$ increased c-fos both at mRNA and protein levels. However, $ginsenoside-R_{b1}$ failed to activate the glucocorticoid receptor, the retinoic acid receptor, or the androgen receptor in CV-1 cells transiently transfected with the corresponding steroid hormone receptors and hormone responsive reporter plasmids. These data support our hypothesis that $ginsenoside-R_{b1}$ acts a weak phytoestrogen, presumably by binding and activating the estrogen receptor.

Ginsenoside-Rb1 Acts as a Weak Estrogen Receptor Agonist Independent of Ligand Binding.

  • Park, Wan-Kyu;Jungyoon Cho;Lee, Young-Joo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.114-114
    • /
    • 2003
  • Ginseng is a medicinal herb widely used in Asian countries, and its pharmacological effects has been demonstrated in various systems such as cardiovascular, central nervous, and endocrine systems. Its effects are mainly attributed to the ginsenosides. We hypothesize that a component of Panax ginseng, ginsenoside-Rbl, acts by binding to estrogen receptor. We have investigated the estrogenic activity of ginsenoside-Rbl in a transient transfection system using estrogen receptors ${\alpha}$ or ${\beta}$ with estrogen -responsive luciferase plasmids in COS monkey kidney cells. Ginsenoside-Rbl activated both estrogen receptors ${\alpha}$ and ${\beta}$ in a dose-dependent manner (0.5 -100 M ). Activation was inhibited by the specific estrogen receptor antagonist ICI 182,780, indicating that the estrogenic effect of ginsenoside-Rbl is estrogen receptor dependent. Next, we evaluated the ability of ginsenoside-Rbl to induce estrogen-responsive progesterone receptor gene by semi-quantitative RT-PCR assays. MCF-7 cells treated with l7${\beta}$-estradiol or ginsenoside- Rb1 exhibited an increased expression of progesterone receptor mRNA. However, ginsenoside-Rbl failed to displace the specific binding of [3H]17${\beta}$-estradiol to estrogen receptor in MCF-7 cells as examined by whole cell ligand binding assays, suggesting that there is no direct interaction of ginsenoside-Rbl with estrogen receptor. Our results indicate that estrogen-like activity of ginsenoside-Rbl is independent of direct estrogen receptor association.

  • PDF

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Estrogen Activities of Extracts from Various Parts of Pomegranate(Punica grantum L.)

  • Lee, Eun-Mi;Kwak, In-Seob;Kim, Hyun-Jong;Park, Yong-Kon;Chung, Bong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.368-372
    • /
    • 2005
  • Phytoestrogens are non-steroidal compounds found in a variety of plants, which exert estrogenic effects in animals. In this study, the useful compounds of pomegranate as preliminarily research for the developing of natural estrogen supplement were determined. The estrogenic activity of phytoestrogens in the pomegranate was estimated by using the Yeast Estrogen Receptor and E-screen assay. Estrogenic activity of all pomegranate extracts in the Yest Estrogen Receptor assay were not significant difference at all concentration. Whereas peel extracts of Iranian and domestic red pomegranate are significantly enhanced in the E-screen assay. When various pomegranate extracts enzyme and acid hydrolyzed, three aglycones of phytoestrogen, kaempferol, quercetin and catechin were detected. Peel extract of domestic red pomegranste contained more than kaempferol(87.0 mg%), quercetin(172.8 mg%)) and catechin(956.8 mg%) than other extracts. These differences in concentrations of key phytoestrogens among various extracts seemed to be responsible for their differences in estrogenic activities. Among these three compound, kaempferol showed the highest MCF-7 cell enhancing efface.

  • PDF

The Expression Patterns of Estrogen-responsive Genes by Bisphenol A in the Wild Medaka (Oryzias sinensis)

  • Lee, Chul-Woo;Park, Min-Kyung;Kim, Hyun-Mi;Kim, Hak-Joo;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제3권3호
    • /
    • pp.185-189
    • /
    • 2007
  • Gene expression levels of choriogenin, vitellogenin and estrogen receptor were determined using Reverse transcription (RT)-PCR technique after exposure to estrogenic chemical bisphenol A in the Korean wild medaka (Oryzias sinensis). These genes have been known to be induced in male test fish when the fish are exposed to estrogenic chemicals. Therefore they can be suggested as a possible biomarker of endocrine disruption in fish, however, relatively little has been known about these genes expression by estrogenic chemicals in Korean wild fish. Mature male Oryzias sinensis were treated with bisphenol A at nominal concentrations of 0.02, 0.2 and 2 mg/L for 6 days and total RNA was extracted from the livers of treated fish for RT-PCR. When the five biomarker genes were amplified by RT-PCR in the same condition, mRNA induction level of each gene was elevated with different sensitivities. Conclusively, the results of this work indicated that measurement of vitellogenin and choriogenin using RT-PCR is effective as a simple tool for the screening of estrogenic chemicals and suggested that O. sinensis would be a suitable model fish for the environmental risk assessment of potential endocrine disruptors.

Activation of Estrogen Receptor by Bavachin from Psoralea corylifolia

  • Park, Joon-Woo;Kim, Do-Hee;Ahn, Hye-Na;Song, Yun-Seon;Lee, Young-Joo;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.183-188
    • /
    • 2012
  • In this study, we examined the estrogenic activity of bavachin, a component of Psoralea corylifolia that has been used as a traditional medicine in Asia. Bavachin was purified from ethanolic extract of Psoralea corylifolia and characterized its estrogenic activity by ligand binding, reporter gene activation, and endogenous estrogen receptor (ER) target gene regulation. Bavachin showed ER ligand binding activity in competitive displacement of [$^3H$] $E_2$ from recombinant ER. The estrogenic activity of bavachin was characterized in a transient transfection system using $ER{\alpha}$ or $ER{\beta}$ and estrogen-responsive luciferase plasmids in CV-1 cells with an $EC_{50}$ of 320 nM and 680 nM, respectively. Bavachin increased the mRNA levels of estrogen-responsive genes such as pS2 and PR, and decreased the protein level of $ER{\alpha}$ by proteasomal pathway. However, bavachin failed to activate the androgen receptor in CV-1 cells transiently transfected with the corresponding receptor and hormone responsive reporter plasmid. These data indicate that bavachin acts as a weak phytoestrogen by binding and activating the ER.

형질전환효모를 이용한 내분비계장애물질검색과 Nonylphenol의 Estrogen 유사작용에 대한 DEHP의 상협작용 (Modification of Estrogenic Effect of Nonylphenol Combined with DEHP in Yeast-based Bioassay)

  • 박미선;정해관;박현신;한의식;김종원;엄미옥;정상희;오혜영
    • Toxicological Research
    • /
    • 제17권1호
    • /
    • pp.65-71
    • /
    • 2001
  • The key targets of endocrine disruptors are nuclear hormone receptors, which bind to steroid hormones and regulate their gene transcription. A yeast-based steroid hormone receptor gene trascription assay was previously developed for the evaluation of chemicals with endocrine modulating activity. The yeast transformants used in this assay contain the human estrogen receptor along with the appropriate steroid response elements upstream of the $\beta$-galactosidase reporter gene. We tried to evaluate several natural and synthetic steroids of their potential to interact directly with the steroid receptor. Some putative endocrine disruptors, including nonylphenol, are weakly estrogenic. But the combined treatment oj these chemicals with di-(2-ethylhexyl)phthalate (DEHP) significantly increased the $\beta$-galactosidase activity in the yeast transformant. These results suggest that we also have to consider the synergistic effects of endocrine disruptors. In this study, we showed that yeast-based bioassay is a valuable tool for screening potential endocrine disruptors and quantitative determination of estrogenicity. And the possibility that the estrogen receptor binds multiple environmental chemicals adds another level of complexity to the interaction between the endocrine disruptors and the human hormone system.

  • PDF