• Title/Summary/Keyword: estrogen receptor-positive MCF-7 human breast cancer cells$16{\alpha}$-hydroxyestrone

Search Result 2, Processing Time 0.016 seconds

Mitogenic Estrogen Metabolites Alter the Expression of β-estradiol-regulated Proteins Including Heat Shock Proteins in Human MCF-7 Breast Cancer Cells

  • Kim, Seong Hwan;Lee, Su-Ui;Kim, Myung Hee;Kim, Bum Tae;Min, Yong Ki
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.378-384
    • /
    • 2005
  • Estrogen metabolites are carcinogenic. The comparative mitogenic activities of $17{\beta}$-estradiol (E2) and four metabolites, 2-hydroxyestradiol (2-OHE2), 4-hydroxyestradiol (4-OHE2), $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1) and 2-methoxyestradiol (2-ME), were determined in estrogen receptor(ER)-positive MCF-7 human breast cancer cells. Each of the E2 metabolites caused proliferation of the MCF-7 cells, but only E2 and $16{\alpha}$-OHE1 induced a greater than 20-fold increases in transcripts of the progesterone receptor (PR) gene, a classical ER-mediated gene. This suggests that the mitogenic action of E2 and $16{\alpha}$-OHE1 could result from their effects on gene expression via the ER. E2 metabolites altered the expression of E2-regulated proteins including heat shock proteins (Hsps). $16{\alpha}$-OHE1 and 2-ME as well as E2 increased levels of Hsp56, Hsp60, $Hsp90{\alpha}$ and Hsp110 transcripts, and the patterns of these inductions resembled that of PR. Hsp56 and Hsp60 protein levels were increased by all the E2 metabolites. Levels of the transcripts of 3 E2-upregulated proteins (XTP3-transactivated protein A, protein disulfide isomerase-associated 4 protein and stathmin 1) and an E2-downregulated protein (aminoacylase 1) were also affected by the E2 metabolites. These results suggest that the altered expression of Hsps (especially Hsp56 and Hsp60) by E2 metabolites such as E2, $16{\alpha}$-OHE1 and 2-ME could be closely linked to their mitogenic action.

Identification of Genes Differentially Expressed in the MCF-7 Cells Treated with Mitogenic Estrogens

  • Cheon, Myeong-Sook;Yoon, Tae-Sook;Lee, Do-Yeon;Choi, Go-Ya;Lee, A-Yeong;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Estrogens, a group of steroid compounds functioning as the primary female sex hormone, play an important role in the development and progression of breast cancer. In this study, using a novel annealing control primer-based GeneFishing PCR technology, five differentially expressed genes (DEGs), expressed using 10nM mitogenic estrogens, $17{\beta}$-estradiol (E2) and $16{\alpha}$-hydroxyestrone ($16{\alpha}$-OHE1), were selected from the estrogen receptor (ER)-positive MCF-7 human breast cancer cells. The DEGs, MRPL42, TUBA1B, SSBP1, KNCT2, and RUVBL1, were identified by comparison with the known genes via direct sequencing and sequence homology search in BLAST. Quantitative real-time PCR data showed that two DEGs, tubulin ${\alpha}1b$ and kinetochore associated 2, were greater than 2-fold upregulated by E2 or $16{\alpha}$-OHE1. Both genes could be new biomarkers for the treatment and prognosis of cancers, and further study may provide insights into the molecular mechanisms underlying development and progression of breast cancer.