• Title/Summary/Keyword: estrogen receptor (ER)

Search Result 243, Processing Time 0.025 seconds

Co-expression and Sequence Determination of Estrogen Receptor Variant Messenger RNAs in Swine Uterus

  • Ying, C.;Chan, M.-A.;Cheng, W.T.K.;Hong, W.-F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1716-1721
    • /
    • 2003
  • Steroid hormones and their receptors play an important role in reproductive process. Estrogen is intimately involved with pregnancy and its function is mediated through the estrogen receptor which has been chosen as a candidate gene to study litter size in pigs. In this study, we report that two estrogen receptor variants, designated pER-1 and pER-2 were co-expressed in the uteri of normal cycling Lan-Yu pig (Sus vittatus; a small-ear miniature in Taiwan) with the pER-1 expression level appeared to be several times higher than that of pER-2. These receptor variants were isolated using reverse transcription-PCR from the pig uteri and their sequences were determined. The pER-1 and pER-2 sequences, which are homologous to those found in other mammalian estrogen receptors, encode putative proteins consisting of 574 and 486 amino acids, respectively. A deletion in exon I was identified in both sequences, with deletion lengths of 63 bp in pER-1 and 327 bp in pER-2. The deletion in pER-1 is internal to that in pER-2 and both deletions resulted in a truncation of the B domain, which confers the transactivating activity of estrogen receptor protein. This result describes the existence of estrogen receptor variants with a deletion in exon I and implies the possibility that physiological functioning of an estrogen receptor may not require the presence of an intact B domain.

Loss of estrogen responsiveness under hypoxia occurs through hypoxia inducible factor-l induced proteasome-dependent down regulation of estrogen receptor

  • Cho, Jung-Yoon;Kim, Duk-Kyung;Lee, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.70-70
    • /
    • 2003
  • Estrogen receptor is a ligand-activated transcription factor. Its action depends on the receptor, its ligand, and its coactivator proteins. As a consequence, the concentration of the receptor is a major component that governs the magnitude of the estrogen response. Despite the extensive knowledge on mechanism of estrogen receptor action, regulation of estrogen receptor itself is not very well understood. Estrogen receptor is known to be downregulated under hypoxia leading to inhibition of estrogen receptor mediated transcription activation. We have studied mechanism of loss of estrogen responsiveness under hypoxia. We found that Hif-l${\alpha}$, a major transcription factor regulating hypoxic response, inhibited transcription of estrogen response element driven luciferase gene by expression of HIF-l${\alpha}$/vp16 construct designed to contain transcription activity under normoxia. This loss of estrogen responsiveness appears to be the result of ER${\alpha}$ downregulation. ER${\alpha}$was downregulated at the levels of ligand-biding and protein within l2-24h, and the response was blocked by the proteasome inhibitor MG132, protein synthesis inhibitor cyclohexamide, and tyrosine kinase inhibitor Genistein. These results demonstrate that Hif-l${\alpha}$ downregulates ER${\alpha}$ by proteasome dependent pathway.

  • PDF

Comparison and Analysis between Human Breast Cancer Cells and Hepatoma Cells for the Effects of Xenobiotic Nuclear Receptors (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, and Peroxisome-Proliferator-Activated Receptor γ ) on the Transcriptional Activity of Estrogen Receptor (유방암 세포와 간암세포에 있어서 에스트로겐 수용체의 전사조절기능에 대한 Xenobiotic 핵 수용체 (Constitutive Androstane Receptor, Steroid and Xenobiotic Receptor, Peroxisome-Proliferator-Activated Receptor γ )의 영향 비교분석)

  • 민계식
    • Journal of Life Science
    • /
    • v.13 no.3
    • /
    • pp.314-323
    • /
    • 2003
  • The purpose of this study was to examine the effects of xenobiotic nuclear receptors, CAR, SXR, and PPAR${\gamma}$ on the transcriptional activity of estrogen receptor in human breast cancer cell lines and compare with those in human hepatoma cell line. Two different breast cancer cell lines, MCF-7 and MDA-MB-231 were cultured and effects of CAR, SXR, and PPAR${\gamma}$ on the ER-mediated transcriptional activation of synthetic (4ERE)-tk-luciferase reporter gene were analyzed. Consistent with the previous report, CAR significantly inhibited ER-mediated transactivation and SXR repressed modestly whereas the PPAR${\gamma}$ did not repress the ER-mediated transactivation. However, in breast cancer cells neither of the xenobiotic receptors repressed the ER-mediated transactivation. Instead, they tend to increase the transactivation depending on the cell type and xenobiotic nuclear receptors. In MCF-7, SXR but neither CAR nor PPAR${\gamma}$ slightly increased ER-mediated transactivation whereas in MDA-MB-231, CAR and PPAR${\gamma}$ but not SXR tend to increase the transactivation of the reporter gene. These results indicate that the effects of ER cross-talk by the CAR, SXR, and PPAR${\gamma}$ , are different in breast cancer cells from hepatoma cells. In conclusion, the transcriptional regulation by estrogen can involve different cross-talk interaction between estrogen receptor and xenobiotic nuclear receptors depending on the estrogen target cells.

Estrogen receptor is downregulated by expression of HIF-1a/VP16

  • Cho, Jung-Yoon;Lee, Young-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.228.2-229
    • /
    • 2003
  • Estrogen Receptor is a ligand-activated transcription factor. The concentration of the receptor is a major component that regulates expression of estrogen-responsive genes. We have studied mechanism of estrogen receptor alpha (ER${\alpha}$) downregulation by HIF-1 using HIF-1${\alpha}$/VP16 constructs. ER${\alpha}$ is known to be downregulated under hypoxic condition. Transcriptional response under hypoxia is mediated through Hypoxia-inducible factor-1 (HIF-1), a transcription factor that is usullaly degraded but stabilized under hypoxia. (omitted)

  • PDF

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

Ginsenoside Rg1 activates ligand-independent estrogenic effects via rapid estrogen receptor signaling pathway

  • Gao, Quan-Gui;Zhou, Li-Ping;Lee, Vien Hoi-Yi;Chan, Hoi-Yi;Man, Cornelia Wing-Yin;Wong, Man-Sau
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.527-538
    • /
    • 2019
  • Background: Ginsenoside Rg1 was shown to exert ligand-independent activation of estrogen receptor (ER) via mitogen-activated protein kinase-mediated pathway. Our study aimed to delineate the mechanisms by which Rg1 activates the rapid ER signaling pathways. Methods: ER-positive human breast cancer MCF-7 cells and ER-negative human embryonic kidney HEK293 cells were treated with Rg1 ($10^{-12}M$, $10^{-8}M$), $17{\beta}$-estradiol ($10^{-8}M$), or vehicle. Immunoprecipitation was conducted to investigate the interactions between signaling protein and ER in MCF-7 cells. To determine the roles of these signaling proteins in the actions of Rg1, small interfering RNA or their inhibitors were applied. Results: Rg1 rapidly induced $ER{\alpha}$ translocation to plasma membrane via caveolin-1 and the formation of signaling complex involving linker protein (Shc), insulin-like growth factor-I receptor, modulator of nongenomic activity of ER (MNAR), $ER{\alpha}$, and cellular nonreceptor tyrosine kinase (c-Src) in MCF-7 cells. The induction of extracellular signal-regulated protein kinase and mitogen-activated protein kinase kinase (MEK) phosphorylation in MCF-7 cells by Rg1 was suppressed by cotreatment with small interfering RNA against these signaling proteins. The stimulatory effects of Rg1 on MEK phosphorylation in these cells were suppressed by both PP2 (Src kinase inhibitor) and AG1478 [epidermal growth factor receptor (EGFR) inhibitor]. In addition, Rg1-induced estrogenic activities, EGFR and MEK phosphorylation in MCF-7 cells were abolished by cotreatment with G15 (G protein-coupled estrogen receptor-1 antagonist). The increase in intracellular cyclic AMP accumulation, but not Ca mobilization, in MCF-7 cells by Rg1 could be abolished by G15. Conclusion: Ginsenoside Rg1 exerted estrogenic actions by rapidly inducing the formation of ER containing signalosome in MCF-7 cells. Additionally, Rg1 could activate EGFR and c-Src ER-independently and exert estrogenic effects via rapid activation of membrane-associated ER and G protein-coupled estrogen receptor.

Association of Genetic Polymorphisms of Estrogen Receptor with Litter Size using PCR-RFLP in Yorkshire Swine (Yorkshire종 돼지에서 PCR-RFLP을 이용한 Estrogen Receptor의 유전적 다형과 산자수간의 관련성)

  • Kim, J.E.;Song, W.C.;Choi, B.D.;Kho, Y.;Park, S.S.;Hong, K.C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.523-528
    • /
    • 2003
  • This study was performed to investigate a possible association of the porcine estrogen receptor(ER) locus with the total number of born(TNB) and number of born alive(NBA) in Yorkshire pigs. Using DNAs extracted from 242 Yorkshire pigs, the ER genotype was determined by PvuII PCR-RFLP. The ER allele frequencies of two types of A and B were 0.39 and 0.61, respectively. The least squares means of the litter size by ER genotype was evaluated. The TNB and NBA were found to be associated with an specific ER allele. The genotype at the porcine ER locus has an application potential for marker-assisted selection for litter size in pigs.

Endocrinic Effects of Toxaphene and Chlordane in Human Hepatoma Cell (HepG2 Cell) Transfected with Estrogen Receptor and Luciferase Reporter Gene (에스트로겐 수용체 및 Luciferase 리포터 유전자 도입 사람 간 종양세포(HepG2 Cell)에서 Toxaphene과 Chlordane의 내분비 독성)

  • Kim Kyeong-Bae;Jung Ji-Won;Yang Se-Ran;Kang Kyung-Sun;Lee Yong-Soon
    • Toxicological Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2004
  • Concern that some chemicals in our environment may affect human health by disrupt-ing normal endocrine function has prompted a research on interactions of environmental contaminants with steroid hormone receptor. Toxaphene and chlordane are among the 12 persistent organic pollutants identified by the United Nations Environment Programme as requiring urgent attention. We compared the estrogenic activity of two organochlorine pesticides, toxaphene and chlordane, at estrogen receptor a (ER$\alpha$) and estrogen receptor $\beta$ (ER$\beta$). Human hepatoma cells (HepG2) were transiently transfected with rat ER$\alpha$ or ER$\beta$ plus an estrogen-responsive complement C3-luciferase (C3-Luc) reporter gene. After transfection, cells were treated with various concentrations of toxaphene and chlordane to investigate agonism or antagonism of these chemicals. Both toxaphene and chlordane were potent agonists in HepG2 cells for ER$\alpha$. In contrast, these chemicals had a minimal agonist activity with ER$\beta$ and almost abolished 17$\beta$-estradiol-induced ER$\beta$-mediated activity. Therefore, toxaphene and chlordane behaved as an ER$\alpha$ agonist and an ER$\beta$ antagonist with estrogen-responsive reporter plasmid C3-Luc, and exposure to these organochlorine pesticides could have a crictical effect on normal endocrine function.

Effects of HIF-1α/VP16 Hybrid Transcription Factor on Estrogen Receptor in MCF-7 Human Breast Cancer Cells

  • Cho, Jung-Yoon;Park, Mi-Kyung;Lee, Young-Joo
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.227-231
    • /
    • 2005
  • The estrogen receptor (ER) is activated and degraded by estrogen. We have examined ER downregulation and activation under hypoxia mimetic conditions. Cobalt chloride induced ER downregulation at 24 h of treatment. This degradation involved hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) as examined by using a constitutively active form of HIF-1$\alpha$, HIF-1$\alpha$/VP16, constructed by replacing the transactivation domain of HIF-1$\alpha$ with that of VP16. Western blot analysis revealed that E2-induced ER downregulation was observed within ${\~}6h$, whereas HIF-1$\alpha$/VP16-induced ER degradation was observed within 12${\~}$20h. HIF-1$\alpha$/VP16 activated the transcription of estrogen-responsive reporter gene in the absence of estrogen. These results suggest that ER downregulation and activation under hypoxia maybe mediated in part by a HIP-1$\alpha$ expression.

Differential Expression of Genes Important to Efferent Ductules Ion Homeostasis across Postnatal Development in Estrogen Receptor-α Knockout and Wildtype Mice

  • Lee, Ki-Ho;Bunick, David;Lamprecht, Georg;Choi, Inho;Bahr, Janice M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.510-522
    • /
    • 2008
  • Our earlier studies showed that estrogen was involved in the regulation of fluid reabsorption in adult mouse efferent ductules (ED), through estrogen receptor (ER) ${\alpha}$ and $ER{\beta}$ by modulating gene expression of epithelial genes involved in ion homeostasis. However, little is known about the importance of $ER{\alpha}$ in the ED during postnatal development. Based on previous findings, we hypothesized that there should be a difference in the expression of epithelial ion transporters and anion producers in the ED of postnatal wild type (WT) and estrogen receptor ${\alpha}$ knockout (${\alpha}ERKO$) mice. Using absolute, comparative and semi-quantitative RT-PCR along with immunohistochemistry, we looked at expression levels of several genes in the ED across postnatal development. The presence of estrogen in the testicular fluid was indirectly ascertained by immunohistochemical detection of the P450 aromatase in the testis. There was no immunohistochemically detectable difference in the expression of P450 aromatase in the testes and ER${\beta}$ in the ED of WT and ${\alpha}$ERKO mice. ER${\alpha}$ was only detected in the ED of WT mice. The absence of ER${\alpha}$ in the ED of postnatally developing mice resulted in differential expression of mRNAs and/or proteins for carbonic anhydrase II, $Na^+/H^+$ exchanger 3, down-regulated in adenoma, cystic fibrosis transmembrane regulator, and $Na^+/K^+$ ATPase ${\alpha}$. Our data indicate that the absence of ER${\alpha}$ resulted in altered expression of an epithelial ion producer and transporters during postnatal development of mice. We conclude that the presence of ER${\alpha}$is important for regulation of the ED function during the prepubertal developmental and postpubertal period.